
Simulation of percolation
on parallel computers

Diploma thesis of Daniel Tiggemann

Institute for Theoretical Physics

University of Cologne

10th May 2001

Document typeset using LATEX 2ε.
Typeset process controlled by make.
Text files typed using vi.
Plots generated by gnuplot.

Simulation von Perkolation
auf Parallelrechnern

Diplomarbeit von Daniel Tiggemann

Institut für Theoretische Physik

Universität zu Köln

10. Mai 2001

iv

Zusammenfassung

Perkolation ist ein Gebiet der statistischen Physik (und anderer Fachgebiete), das
seit sechzig Jahren untersucht wird. Obwohl Perkolation ein sehr einfaches Mod-
ell ungeordneter Medien ist, hat es doch eine nahezu unüberschaubare Zahl von
Anwendungen, sodass das Interesse daran nicht nur akademischer Natur ist.

Perkolation ist auch deshalb ein wertvolles Modell der statistischen Physik, weil
es trotz seiner Einfachheit eine Vielzahl von Eigenschaften aufweist, die auch in
anderen physikalischen Systemen eine Rolle spielen: Phasenübergang zweiter Ord-
nung, Skalenverhalten, Universalität.

Glücklicherweise lässt sich Perkolation einfach erläutern: Man nehme ein Git-
ter und besetze die Gitterplätze zufällig mit einer Wahrscheinlichkeit p, bzw. lasse
sie frei mit der Wahrscheinlichkeit 1 − p. Gruppen von besetzten nächsten Nach-
barn nennt man Cluster. Perkolationstheorie beschäftigt sich mit den Eigenschaften
dieser Cluster. Wir haben hier also eine Definition, die stochastische mit ge-
ometrischen Aspekten verbindet. Dies führt zu einem Problem:

Unglücklicherweise gibt es keine exakte Lösung für Perkolation (im Allgemeinen).
In einer Dimension, auf Bethe-Gittern und für gewisse Gittertypen in zwei Dimen-
sionen gibt es exakte Lösungen, aber für eine Vielzahl von Dimensionen und Git-
tertypen ist man auf numerische Näherungsmethoden angewiesen.

Aufgrund der stochastischen Natur von Perkolation sind Monte-Carlo-Simulati-
onen ein natürliches Werkzeug. Um möglichst präzise Ergebnisse zu erhalten, ist
aber die Simulation möglichst großer Gitter notwendig. Dazu möchte man natürlich
die leistungsfähigsten Computer der Welt nutzen.

Während bis Mitte der 70er Jahre des letzten Jahrhunderts noch keine Algorith-
men bekannt waren, mit denen man vernünftige Monte-Carlo-Simulationen hätte
durchführen können, änderte sich die Situation schlagartig 1976, als Hoshen und
Kopelman einerseits und Leath andererseits die nach ihnen benannten Algorith-
men vorstellten. Damit wurde eine Werkzeug geschaffen, das die numerische Un-
tersuchung von Perkolation mit hoher Genauigkeit gestattet.

Um maximale Präzision zu erreichen, ist die Nutzung sehr großer Computer
nötig; die leistungsfähigsten Computer unserer Zeit sind aber ausnahmslos Parallel-
rechner, wohingegen der Hoshen-Kopelman-Algorithmus für klassische sequenzielle
Rechner entworfen wurde. Eine Übertragung auf parallele Rechner ist keineswegs
trivial.

Hauptziel der vorliegenden Diplomarbeit war es, den Hoshen-Kopelman-Algo-
rithmus so auf einen Parallelrechner zu portieren, dass damit Weltrekordsimulatio-
nen möglich wurden (d. h. die Untersuchung von Gittern, die größer waren als alle
zuvor untersuchten).

Zu diesem Zweck wurde die Methode der Gebietszerlegung (engl. domain de-
composition) gewählt: Das Gitter wurde in Streifen zerlegt, wobei jeder Streifen
einem Prozessor zugeordnet wurde.

Der Hoshen-Kopelman-Algorithmus untersucht das Gitter Zeile für Zeile (bzw.
Ebene für Ebene in drei Dimensionen), wobei in einem Ld-Gitter nur Ld−1 Git-

v

vi Zusammenfassung

terplätze abgespeichert werden müssen. Um möglichst große Systeme simulieren
zu können (insbesondere in d > 2), war es nötig, das Gitter so zu zerlegen, dass
jeder Prozessor nur einen Teil der Ld−1 Gitterplätze abspeichern musste. Dadurch
wurde zwar die Implementation kompliziert (da viel Kommunikation zwischen den
Prozessoren nötig wurde), aber die Effizienz des Algorithmus’ litt nicht signifikant
darunter.

Durch diese Methode konnten die alten Weltrekorde von 20000002, 100013 und
6114 deutlich verbessert werden. Damit gelang auch die sehr genaue Bestimmung
einiger Systemeigenschaften, z. B. die Zahl der Cluster pro Gitterplatz nc, der
Fisher-Exponent τ für die Clustergrößenverteilung und der Exponent ∆1 für die
Korrektur zum Skalenverhalten (alles am kritischen Punkt pc):

d L τ ∆1 nc
2 4000256 187/91 0.70(2) 0.02759791(5)
3 20224 2.190(2) 0.60(8) 0.052442(2)
4 1036 2.313(2) 0.5(1) 0.0519980(2)

Im Rahmen dieser Simulationen wurden auch andere Aspekte wie z. B. der
Einfluss von (schlechten) Zufallszahlengeneratoren oder der endlichen Systemgröße
auf die Ergebnisse untersucht. Dabei bewahrheitete sich die alte Weisheit, dass man
Simulationsresultaten mit Vorsicht begegnen muss; umfangreiche Überprüfungen
anhand von Kontrollsimulationen sind notwendig.

Durch die erfolgreiche Parallelisierung des Hoshen-Kopelman-Algorithmus’ ist
es jetzt möglich, innerhalb weniger Stunden Systeme zu simulieren, deren Berech-
nung auf einem sequenziellen Rechner Wochen dauern würde oder sogar überhaupt
nicht möglich wäre. Dadurch können noch viele Aspekte von Perkolation unter-
sucht werden, die in dieser Diplomarbeit aus Zeitgründen keine Beachtung finden
konnten.

Contents

Zusammenfassung (in German) v

1 Introduction 1
1.1 What is percolation? . 1
1.2 Phenomena of percolation . 2

2 Parallelizing the Hoshen-Kopelman algorithm 5
2.1 The Hoshen-Kopelman algorithm . 5
2.2 Cutting the lattice into strips . 6
2.3 Inventing a complicated algorithm 7
2.4 To make matters worse: Recycling 8
2.5 Counting of clusters . 9
2.6 A step-by-step description of the algorithm 10
2.7 Other ways of parallelizing Hoshen-Kopelman 11

3 Results of Monte Carlo studies 13
3.1 Typical errors in Monte Carlo data 13
3.2 Cluster size distribution . 14
3.3 Corrections to scaling . 17
3.4 Influence of boundary conditions on finite-size effects 19
3.5 Number density . 20
3.6 The problem with not-so-random numbers 21
3.7 Summary of obtained results . 22

4 Runtime and efficiency 23
4.1 Speed per processor for the whole simulation 23
4.2 Runtime of different parts of the simulation 24
4.3 Impact on speed of different PRNGs 24

5 Summary and outlook 27
5.1 Summary . 27
5.2 Outlook . 28

A Acknowledgements 31

B Bibliography 33

C Code of programs 37
C.1 Parallel program . 37
C.2 Sequential program with averaging 65

vii

viii Contents

D Details of pseudo-random number generators 75
D.1 Linear congruential generators . 75
D.2 Lagged Fibonacci generators . 75

E Erklärung 77

Chapter 1

Introduction

1.1 What is percolation?

Percolation is a problem that can be easily defined, but which is difficult to solve.
Take a square lattice of L2 sites. Each site is either occupied (with a probabil-

ity p) or free (with probability 1 − p), independent of other sites. A cluster is a
group of neighbouring occupied sites, surrounded by free sites. Percolation theory
deals with the properties of these clusters.

In the sketch below, occupied sites are marked by a bullet, clusters are marked by
a surrounding line. We have two 1-clusters, a 2-cluster, and a 3-cluster. Throughout
this diploma thesis, the number of sites in a cluster will be denoted by s, the number
of clusters in a system that contain s sites each by ns. Thus, below we have n1 = 2,
n2 = 1, and n3 = 1.

u���
uu
�
�
�

u uu��
��
� u���

This is called site percolation. There is also bond percolation: the bonds between
sites are occupied with probability p, and we define as clusters those sites that are
connected through occupied bonds. Within this diploma thesis, only site percolation
will be investigated; bond percolation differs only gradually, not principally. A good
introduction to percolation theory can be found in [47], a short overview in [11, 44].
Some remarks on the history of percolation theory can be found in [19, 26].

Research in percolation started 1941 with Paul Flory investigating the gelation
of polymers [17], although the term percolation was first coined by Broadbent and
Hammersley in 1957 [9, 23, 24]; Broadbent was investigating gas masks, which
sheds a first light on the diversity of applications for percolation theory (for more
on applications, cf. [43]).

Because of the stochastic nature of the problem, Monte Carlo methods were a
natural tool to be applied to percolation. Unfortunately, in the fifties and sixties,
computers had strongly limited capabilities. Together with rather simple algorithms
this yielded a situation where the Monte Carlo simulation of percolation was pos-
sible only for very small systems that did not show interesting behaviour. To cite
Hammersley and Handscomb: “The direct simulation [of percolation] is out of
the question” [25, p. 135]. Speed and memory capacity of computers grew exponen-

1

2 Introduction

tially over the last decades (Moore’s law), but the real breakthrough for Monte
Carlo studies of percolation came with sophisticated algorithms in the year 1976.

The algorithm of Leath [31, 32] generates a cluster from a seed site and uses a
list of sites still-to-investigate for growing that cluster. The algorithm of Hoshen

and Kopelman [27] generates a whole lattice in linear manner and uses a list of
labels for accounting clusters generated on-the-fly.

The combination of modern algorithms with modern hardware made Monte
Carlo studies an effective tool for dealing with percolation. It was possible to
get results of high precision. This can be pushed further by utilising the modern
parallel computers, which offer unrivaled performance. Unfortunately, they require
new algorithms. One such algorithm will be described in this diploma thesis.

1.2 Phenomena of percolation

One reason why percolation is so popular in statistical physics is that it is a very
simple, purely geometric and stochastic problem (to cite Stanley et al. [44]: “In
principle, Archimedes could have studied percolation”), but shows the full set of
phenomena found in other physical systems, like phase transition, scaling, and uni-
versality. Even more, the modern concept of renormalization can be easily demon-
strated on percolation.

When there is a cluster that goes from top to bottom, we call this cluster “infi-
nite”, because if we increase system size, a cluster retaining this characteristic also
increases in size, and for L→∞ the cluster would become infinitely large.

When we increase the occupation probability p from 0 to 1, we will recognize
that for a certain probability pc such an infinite cluster appears; below pc there is
none, above pc there is one. Because of the sudden switch behaviour, we speak of
a phase transition. pc is the critical point.

Near the critical point, some system properties go with power laws. For example,
the weight of the infinite cluster P ∝ (p−pc)β , the mean cluster size S ∝ |p−pc|−γ ,
or the correlation length ξ ∝ |p− pc|−ν .

Right at the critical point, the correlation length is infinite. This leads to the
interesting situation that the system is invariant under real-space renormalization,
in other words, when we rescale the system, it looks the same (a nice illustration of
this self-similarity at the critical point can be found in [44]). So we expect a power-
law for the distribution of cluster sizes right at the critical point, ns(pc) ∝ s−τ .
This power-law is modified for small cluster sizes s, as then the lattice spacing is an
inherent length that breaks self-similarity; away from the critical point, the power-
law is modified as the system no longer is self-similar on all length-scales. The full
ansatz for the cluster size distribution is (cf. [45, 47])

ns(pc) = k0s
−τ · (1− k1s

−∆1 + . . .)︸ ︷︷ ︸
for small s

· f((p− pc)sσ)︸ ︷︷ ︸
away from pc

, (1.1)

where the second term is the correction for small clusters and the third for p away
from pc. Here we can notice another important property of percolation, which plays
a central role in modern statistical physics: universality. This means that a special
quantity, like a critical exponent, does not depend on microscopic details; i. e. it is
the same for a square lattice and a triangular lattice. In eq. 1.1 τ is universal, while
k0 is not.

Scaling arguments relate several critical exponents with each other (cf. [46]):
1/(τ − 2) = 1 + γ/β, where τ is the exponent for the cluster size distribution right
at the critical point, β is the exponent for the size of the infinite cluster, and γ
that for the mean cluster size (the exponents β and γ are not investigated here, as

3

these require many simulations with slightly different p, which costs too much of
the precious computing time; τ or ∆1, on the other hand, can be extracted from a
single run). The scaling function f(z) is not investigated here for the same reason.

Above six dimensions, the cluster numbers ns are expected to follow mean-field
theory, for which the critical exponents are the same for all dimensions d > 6 (for
this reason, d = 6 is called the upper critical dimension). Additionally, f(z) is
expected to be a gaussian. But recent numerical work [55] showed that i. e. seven
dimensions are not yet fully understood. However, due to the limited time of one
year for a diploma thesis, it was not possible to implement the algorithm presented
here for more than four dimensions.

4 Introduction

Chapter 2

Parallelizing the
Hoshen-Kopelman algorithm

2.1 The Hoshen-Kopelman algorithm

The Hoshen-Kopelman algorithm examines a lattice in linear fashion, site after site.
It can be used to count clusters in an existing lattice (that is, experimental data),
but in Monte Carlo studies the lattice is generated on-the-fly (when we examine a
site, we roll the dice and decide by this if it is occupied or free). In this case, one
main advantage of the algorithm is that we do not have to store the whole lattice
in memory, but only one line in two dimensions, one plane in three dimensions, and
more generally: if we are examining a Ld lattice, we only have to store Ld−1 sites,
which yields a big advantage for memory consumption in low dimensions.

Let us now examine a small lattice using the Hoshen-Kopelman algorithm. Bul-
lets mark occupied sites:

uu u uu
We now go through the lattice line by line, and within each line from left to

right. Whenever we encounter an occupied site that is not connected to another
occupied site to the left or to the top, we say that this site starts a new cluster and
assign it a new number as cluster label, starting from 1. On the other hand, when
it has an occupied neighbour to the left or top, it inherits its cluster label from that
neighbour. Thus, after seven examined sites our lattice looks like

1
1

3 ?
2

The eigth site has two occupied neighbours with different cluster labels, so we
have to decide which of them shall be the new cluster label for the site currently in
examination. When we choose label 2, we also have to renumber the sites carrying
the label 3, because our assumption that they were different clusters showed as
wrong. For large clusters, this would require a lot of work.

The genuine idea of the Hoshen-Kopelman algorithm is to let the sites labeled
as they are and instead write down a notice that clusters 2 and 3 belong together.
In practice this is done by using a seperate data structure that holds information

5

6 Parallelizing Hoshen-Kopelman

about the cluster labels: for a direct or “root” label, it records the number of sites
within that cluster, for an indirect or “non-root” label, it records to which “real”
cluster label this label belongs. This distinction is made within the label list simply
by the sign of the integer number.

After the whole lattice was examined, our supplementary data structure contains
all information we need: Each “real” cluster corresponds to a root label, which also
records the number of sites in that cluster. All non-root labels point directly or
indirectly to a root label. They carry no information, as their only purpose was to
spare us the costly renumbering of sites.

Because we investigate line by line and only need information for the left and
top neighbour of the site in investigation, we only need memory for one line of size
Ld−1 when investigating a lattice of size Ld. Additionally, we also need memory
for the supplementary data structure containing information about the labels. A
lot of space within this data structure is occupied by non-root labels that carry
no information, but are only a trick that speeds up simulation. When doing huge
simulations, it is thus a good idea to recycle this wasted space by relabeling the
plane currently in investigation with root labels only and then throwing away all
non-root labels. Even more, we can mark all root labels within our data structure
that are present in the currently examined hyperplane, and afterwards throw away
all non-marked root labels, as they belong to clusters that “died out” above the
current hyperplane. This method is known as Nakanishi recycling (cf. [37]).

By using the Hoshen-Kopelman algorithm with Nakanishi recycling, it was pos-
sible to simulate percolation on impressively large lattices, as for low dimensions
not computer memory, but only computer speed was a limiting factor. With the
advent of powerful supercomputers, Monte Carlo techniques proved as a useful tool
for studying percolation that allowed extremely high precision for the determination
of interesting properties. This allows us to reverse Broadbent’s remark on Monte
Carlo studies of percolation [8] “The capacity of computers is, however, insufficient
for any but small lattices. This is another example of the authors’ remark that
pen and paper might be better than machine work” to the computer programmers’
remark “Machine work might be better than ink and paper”.

A rather new trend in supercomputing are massively parallel computers. They
emerged as a tool for general purpose computing with the beginning of the 1990s.
They offer unrivaled performance for a rather low price, but they have one major
disadvantage: Traditional algorithms were designed for sequential, single-processor
computers and cannot simply be used on massively-parallel computers. Instead,
massively-parallel processing (MPP) requires completely new or at least heavily
restructured algorithms. This is the main reason why MPP is not as widespread as
one would expect.

On the other hand, sometimes it is reasonable to put some effort into porting
algorithms to MPP. This is true also for percolation, because more speed or more
memory for simulating a larger lattice means a higher precision for determining
properties of interest. There are several ways to parallelize the Hoshen-Kopelman
algorithm in a reasonable way, some of them were already presented in literature
[15, 16, 20, 22, 29, 51, 54]. In this diploma thesis, a new, rather complicated, but
promising way was chosen. Using this algorithm, it was possible to achieve new
world records in simulated system size, which substantially improved upon the old
world records.

2.2 Cutting the lattice into strips

One of the major limitations for the Hoshen-Kopelman algorithm in higher dimen-
sions is memory, or lack thereof. The old world record size for a simulation in four

7

dimensions was 6114 (cf. [50]), which requires approx. 1 GByte only for storing
the hyperplane of investigation, aside from more memory needed for supplementary
data structures. Pushing this world record further would require huge amounts of
memory not available in standard sequential computers.

Fortunately, massively parallel computers offer the neccessary amounts of mem-
ory. Unfortunately, they use a programming model of distributed memory, where
the whole memory is divided into partitions onto which only single processors have
direct access; access by other processors has to be done by message passing, which
requires explicit parallel programming.

On distributed memory machines, for implementing algorithms that operate on
regular data structures like lattices, the standard method is domain decomposition.
The lattice that shall be simulated is cut into several domains, and each domain
is assigned to one processor and its local memory. When sites from one domain
interact with sites from another domain, these interactions have to be programmed
using message passing. Interactions within a domain are programmed like in a
conventional algorithm.

For the Hoshen-Kopelman algorithm, there are several reasonable ways for de-
composing the lattice. As the algorithm walks through the lattice hyperplane by
hyperplane, it makes sense to classify the different resulting domains into those
parallel and those perpendicular to one such hyperplane.

A decomposition into parallel (or “horizontal”) strips would offer one big advan-
tage: within each domain, all interactions would be local and no message passing is
required. Only after the whole domain was investigated, communication between
the domains resp. processors is neccessary. This allows for the easy implementation
of the Hoshen-Kopelman algorithm, as the local part within the domain is simply
the standard algorithm for sequential computers. But there is also one disadvan-
tage: each processor has to store one full hyperplane. For high dimensions, this
would require too much memory (even in three dimensions).

On the other hand, a decomposition into perpendicular (or “vertical”) strips
would divide the hyperplane into pieces, so that each processor has to store only
a small amount of data. We could thus simulate larger lattices. Of course, this
advantage comes at a price: during the simulation sites from different domains
interact with each other and so message passing becomes an inherent ingredient of
our algorithm. In other words: the algorithm would be much more complicated.
But it is worth the effort.

2.3 Inventing a complicated algorithm

The main problem when decomposing the lattice into vertical strips is that sites
from different strips can interact in a non-regular manner. For example, a cluster
which was local in a strip gets in contact with a cluster from the left strip. Those
two need to be joined, which makes communication neccessary. Or even worse, a
cluster from the left strip and a cluster from the right strip join in the middle strip.

When designing algorithms for massively-parallel computers, it is important to
keep in mind the limitations of message passing: delivering messages is about one
or two orders of magnitude slower than direct access to local memory. Even worse,
many small messages require much more time for delivery than one large message.
It is therefore a good idea to bundle messages.

When investigating its piece of the hyperplane, each processor should defer com-
munication until it has finished investigation; this is the local part. After this, all
processors exchange the information in a regular manner. This is the reason why
the algorithm becomes complicated, but this complexity is neccessary for efficency.

We introduce the notion of local clusters and global clusters. Local clusters are

8 Parallelizing Hoshen-Kopelman

clusters in the lattice, whose occupied sites all lie in the same strip. Global clusters
consist of occupied sites which are distributed among several strips.

The local clusters can be handled like in the sequential Hoshen-Kopelman algo-
rithm. Only when they extend to the border of the strip, we have to find out if they
become global (by means of communication). With the global clusters we have to
be careful: When modifying global clusters during the local part, we later have to
inform the neighbour strips (those in which parts of the cluster are present) about
possible changes.

We extend our supplementary data structure of labels: There are no longer only
non-root and root labels, but root labels are divided in local ones (corresponding
to local clusters) and global ones (corresponding to a part of a global cluster). Of
course, each processor has its own local array of labels. A global label records the
number of sites in that cluster within that strip, the left neighbour (that is, the
global label in the left neighbour strip that corresponds to the same global cluster)
and the right neighbour. Left neighbour or right neighbour can be void in a global
label, but not both, because in that case it would describe a local cluster.

When adding a site or a whole local cluster to a global cluster during the local
part, we simply record the number of added sites in the global label. But when two
global clusters join, we have to inform the neighbours about this change. Let us
call this process “pairing”, as a pair of clusters is joined forever.

When the local part is finished, the borders of the strips have to be examined,
in order to find out if there are interconnections between clusters in different strips.
In such cases, local labels can be converted to global ones.

Even more, let us examine the following situation: In our strip, we have to
different global labels that are connected to two different global labels in the left
neighbour strip. Now these two clusters join during our local part. It is easy to
achieve that these two different clusters are joined within our strip, but we also have
to inform our left neighbour, because the two labels in that strip have to be joined,
too. And what if they also have connections to the next left strip? We have to
pass the information even further. In order to avoid such complex communication
patterns, we once again use the method of deferred information exchange: we store
the information that two global labels have to be paired in a special data structure
and exchange these data with our nearest neighbours after the local part. When
this triggers the pairing within the next-nearest neighbours, our nearest neighbour
puts a note into its data structure and informs the next-nearest neighbour one local
part later. Thus, the neccessary information for pairing large global clusters (that
span several strips) trickles along the strips step by step. Of course, when we need
to rely on the fact that all global labels are correctly paired, we have to do a lengthy
relaxtion process: we repeat the nearest-neighbour pairing over and over again, until
there is no longer any pairing information exchanged between any strips.

So, our algorithm now looks like this: Within the strip, do the normal Hoshen-
Kopelman algorithm in our part of the hyperplane. Whenever two different global
clusters join, put an entry into our pairing data structure. After the local part
is finished, exhange the borders with our neighbour strips and find out if there
are interconnections between the strips. In that case, convert local clusters to
global ones (if they are not already global). Exchange pairing information with our
neighbour and do the pairing. If new pairing information arises, simply record it;
we will exchange it after the next hyperplane.

2.4 To make matters worse: Recycling

When simulating large lattices, we have to keep memory consumption low. Unfor-
tunately, much memory is wasted for non-root labels. On sequential computers, we

9

can recycle this memory easily (using Nakanishi recycling). On parallel computers,
this becomes a difficult and complicated task.

After we have relabeled our current hyperplane with root labels only (both local
and global ones), we can safely delete all non-root labels that point to local root
labels, as these correspond to clusters within our strip that were never in touch with
other strips (otherwise they would point to a global root label). On the other hand,
we must not delete non-root labels that point to global root labels, as they were
possibly in touch with labels of other strips, and those other strips could reference
them still (avoid “dangling pointers”).

So, one prerequisite for recycling “global” non-root labels is to replace all ref-
erences to global non-root labels by references to global root labels. We do that
as follows: we walk through the list of our global labels and put their pointers to
left (resp. right) neighbours in a message, which we send to the left (resp. right)
processor. This one reclassifies all that labels and sends the message back, so that
we can replace the old references to neighbour labels by the reclassified ones. After
this process, all global labels reference only root labels in other strips, which allows
us to safely delete all non-root labels.

Local root labels can be easily recycled the same way as in the sequential Hoshen-
Kopelman algorithm: all local root labels that are still present in the current hy-
perplane are marked, all non-marked local root labels can be deleted. Of course,
we must not mix local and global root labels.

The number of global labels generated is roughly proportional to the size of the
interface between the strips. For higher dimensions, this means that we need to
recycle even global root labels (for two dimensions, this is not neccessary). We do
this by reduction of global clusters: a global cluster extends over several strips. In
the strip that contains the right end of the cluster, we investigate if the part of
that cluster in that strip is still alive (present in the current hyperplane); if not, we
recycle it and inform the left neighbour of that fact (we also send the number of sites
present in the recycled part, so that it can be added to the still-alive part). When
the left neighbour that receives the message has itself no left neighbour, it can be
safely converted to a local cluster (it just has lost the right neighbour). During the
next recycling, it can be discarded in the local recycling process.

2.5 Counting of clusters

After we have done the whole simulation, we have to count the clusters that we
have detected, by examining the list of labels. Due to the parallelization, this is
more complicated than in a sequential simulation, as some clusters are distributed
over several strips, having root labels in each. These have to be joined, so that they
can be correctly accounted. We do this by a concentration process: Each processor
examines its global root labels. For each such label that has a left neighbour, it
sends the number of sites of that label to the neighbour (together with the number
of the corresponding label in the left strip) and records that the label no longer
carries sites. It then receives the data from its right neighbour and adds the sites to
the corresponding global label. By repeating this process, the number of sites for
a global cluster are concentrated in the leftmost strip the cluster extends to. After
this, clusters can be counted locally in each strip; the obtained data is added later
by one single processor.

One exception is the infinite cluster, as this can extend over all strips and wrap
around to itself. In that case, it cannot be concentrated. This allows us for an easy
detection of connectivity: If we discover after the concentration that there is one
cluster which has not been concentrated, then this is the infinite one. We sum it
up by investigating the corresponding labels within all strips.

10 Parallelizing Hoshen-Kopelman

2.6 A step-by-step description of the algorithm

The following list is a semi-formal description of the algorithm. Local and commu-
nication part are repeated for each hyperplane the system consists of, recycling is
done whenever neccessary after the local and communication part, and counting is
done after the full system was examined.

1. Initialization: Occupy the zeroth plane for busbar, if desired; initialize all
data structure; etc.

2. Local :

(a) Examine the strip site by site. Do labeling.

(b) When two different global clusters join at one site, generate pairing in-
formation for left and right neighbour, but defer communication until
after the local part.

3. Communication:

(a) Exchange borders of strip with neighbours.

(b) When two clusters of both strips join, convert clusters to global. If they
are already global, but not yet connected, generate pairing information.

(c) Exchange pairing information. Pair global labels that belong together.
During this, new pairing information can come up.

(d) Check if recycling is neccessary due to tight memory conditions.

4. Recycling (if neccessary):

(a) Reclassify the current hyperplane with root labels.

(b) Delete all non-root labels that point to local root labels.

(c) Reclassify the pointers to left and right of the global root labels by asking
the neighbours for the corresponding root labels.

(d) Delete all remaining non-root labels.

(e) Mark all living local root labels and delete the non-marked ones.

(f) Look for all global root labels that are not present in the current hyper-
plane and have no right neighbour; delete them and send the number of
sites to the left neighbour.

(g) When a global label is informed that its right neighbour was deleted, and
it has no left neighbour, convert it to local.

5. Counting :

(a) Count local clusters.

(b) Concentrate global clusters.

(c) Count global clusters.

(d) Look for a global cluster which has not been concentrated. If it exists,
we have connectivity. Sum up this cluster explicitly.

(e) Do output.

11

2.7 Other ways of parallelizing Hoshen-Kopelman

There are, as mentioned above, certainly other ways of domain decomposition.
Old work (like [15, 22, 29]) did parallel cluster counting for implementing Ising
models with Swendsen-Wang dynamics, which cannot be compared directly with
percolation (but is of course inspirative). A recent work of Teuler and Gimel [54]
did investigate percolation, but the authors did store the full lattice instead of
only one plane, which restricted them to rather small lattice sizes. A presumably
still-in-progress work by MacIsaac and Jan (private communication) tries to use a
domain decomposition in strips parallel to the hyperplane of investigation, a natural
counterpart to the decomposition chosen within this thesis. Their approach should
be easier to implement and more efficient in execution, as communication is needed
only after the full Hoshen-Kopelman examination of the strip, and not after each
investigated hyperplane. However, world record sizes for simulations will be possible
only in two dimensions.

12 Parallelizing Hoshen-Kopelman

Chapter 3

Results of Monte Carlo
studies

3.1 Typical errors in Monte Carlo data

When analysing Monte Carlo data, it is important to keep in mind that the results
are influenced by several types of errors, namely:

• Statistical errors: Due to the stochastic nature of Monte Carlo methods,
there are deviations from the “theoretically exact” values. These are com-
pletely normal. We can find out about these errors by doing many runs with
different random numbers and then averaging over these generated values yi,
yielding < y > as a good estimate for the value without statistical errors;
∆y =

√
(< y2 > − < y >2)/(N − 1) is called the statistical error of < y >

and gives an estimate, how strong < y > would change, if we add another sta-
tistically independent value yi. The larger the system is, the smaller become
the fluctuations. This makes simulations of huge lattices reasonable; even if
we can do only few runs or even only a single run of that size, obtained values
have high precision.

We can estimate a probable statistical error by simulating smaller systems
and extrapolating the errors to larger sizes. In many cases we will find that
other sources of errors have greater influence than the statistical error.

• Finite-size errors: As all computers known to mankind have only finite
memory and computing speed, we can only simulate finite systems. Such finite
systems can show rather different behaviour than idealized infinite systems,
especially if the systems are very small.

Although these finite-size corrections can be very interesting in their own right
(sometimes an infinite system is easier to handle with analytical methods
than a finite system, but corresponding finite systems show a more complex
and interesting behaviour), for studying percolation we are interested in the
behaviour of an inifinite system. We can simulate finite systems of different
sizes and extrapolate to infinity; but such extrapolations have to be done with
caution. It is a good idea to try to estimate the finite size correction with
other means, for example to compare the theoretically expected behaviour
with the real one.

When simulating large systems, finite-size corrections should become small.
It is often very expensive to extrapolate the finite-size corrections to high
precision, as this requires simulating lattices of various, very large sizes. A

13

14 Monte Carlo Studies

rough estimate should be enough for many purposes, to find out which type
of error is the most important one.

• Systematic errors: These are the most problematic ones and they are very
hard to deal with. Systematic errors arise when we do the simulations different
than we really would like to do them, and in a systematic fashion. In some
sort of sense, finite-size effects are also systematic errors: we try to obtain
properties of infinite systems, but examine only finite ones. But as finite-size
errors are easy to understand and rather easy to deal with, they have their
own category.

The most classical source of systematic errors stems from bugs in the program
code. This is not the only reason why programs should be thoroughly tested
after they were written.

Another common source of systematic errors in Monte Carlo simulations are
the pseudo-random number generators (PRNGs). In many cases, they are not
as “random” as they should be. They can show short-length correlations (if
one site is determined to be occupied, the next one has a higher probability to
be occupied, too, thus favouring large clusters), long-range correlations (after
N >> 1 random numbers, the sequence is simply reproduced, thus reducing
effective system size), or medium-range correlations (every Nth site has an
above-average probability to be occupied; when lattice size L is approx. N ,
unwanted structures are formed).

In practice, all PRNGs show correlations of these kinds, but to a different
degree. Choosing the right one depends on many factors: for example, the
quality of random numbers depends also on lattice size (due to medium-range
correlations). To make matters worse, some PRNGs are good, but very slow.
In general, for small systems the most PRNGs are suitable, but for large
systems, correlations can show devasting effects.

It is sometimes helpful to use a “voting method”: do the same simulation with
different PRNGs and look if they all agree; if one significantly differs from the
others, it is bad. This requires several runs and is thus not suitable for huge
lattices. Unfortunately, especially huge systems show problems with random
numbers.

Systematic errors are so difficult to handle because they are hard to detect.
They cannot simply be averaged out by doing several runs. There are many
sources for systematic errors: in general, whenever we simplify a realistic
systems in order to make it suitable for simulation, we generate systematic
errors.

It is important not to be overly optimistic and not to claim small error mar-
gins for a value, just because the statistical error is small: careful search for
systematic errors is neccessary, for example by testing data against theoret-
ical assumptions, by comparing with exact data where possible, or by other
methods.

3.2 Cluster size distribution

We expect ns, the number of clusters of size s, to follow a power-law: ns ∝ s−τ ,
with τ , the so-called Fisher exponent (cf. [14]) being a universal constant, only
depending on dimensionality. To make handling of Monte Carlo data easier, we do
not store all ns for all s, but instead we gather these data in bins: the first bin
stores n1, the second n2 + n3, the third n4 + . . .+ n7, and so on. By growing these

15

bins exponentially, we obtain an easily to handle amount of data even for very large
simulations. Analysis of binned data is easy:

Ns =
∞∑
s′=s

ns′ =
∞∑
s′=s

(s′)−τ '
∫ ∞
s

(s′)−τ ds′ = s−τ+1

By plotting the summed up cluster numbers, we can easily obtain all interesting
information. When plotting the cluster size distribution double logarithmically, we
expect from the power-law to see a straight line with slope −τ+1. This is indeed the
case, but it is not honest to judge from such a plot that the power-law is fulfilled
well, as deviations from the law are hidden by the logarithmic scale. It is more
honest to divide the real data by the expected behaviour and to plot the results on
a linear scale (we still plot the x-axis representing s logarithmically, as our bins are
growing exponentially in size, yielding equidistant points). In such a “honest” plot
we see easily that our data are influenced by two effects: corrections to scaling for
small s and finite-size effects for large s.

In two dimensions, the value of τ is supposed to be known exactly (cf. [38, 39,
40, 42]): τ = 187/91. All our Monte Carlo data agree well with this value. In higher
dimensions, there are no exact values known for τ , so we have to extract them from
our data. Of course, if we have to extract more values from given data, the error
margins for the values will increase. Due to this, our results for two dimensions are
more precise than those for higher dimensions.

2.5e+11

3e+11

3.5e+11

4e+11

4.5e+11

5e+11

5.5e+11

6e+11

6.5e+11

0 2 4 6 8 10 12

s1−τ ∑
ns′

log10 s

3

3

3

3
3

3333333333333333333333
3

3

33

3

3

3
3

3

3

Figure 3.1: Cluster size distribution in two dimensions for world record size L =
4000256, using the Kirkpatrick-Stoll PRNG. The dotted line corresponds to the
asymptotic behaviour.

We can extrapolate the asymptotic behaviour with higher precision, when we
also take into account the corrections to scaling. By doing this (as described in the
next section), we not only get good estimates for τ , but we can also better guess
the error margins for τ .

For two dimensions, we find with high accuracy that our τ agrees well with the
presumably exact τ = 187/91.

16 Monte Carlo Studies

3e+11

4e+11

5e+11

6e+11

7e+11

8e+11

9e+11

1e+12

1.1e+12

1.2e+12

0 1 2 3 4 5 6 7 8 9 10

s1−τ ∑
ns′

log10 s

3

3
3

33333333333333333333333
3

3

3

3

3

3

3

3

Figure 3.2: Cluster size distribution in three dimensions for world record size
L = 20224, using the Kirkpatrick-Stoll PRNG. The dotted line corresponds to
the asymptotic behaviour.

5e+10

6e+10

7e+10

8e+10

9e+10

1e+11

1.1e+11

1.2e+11

0 1 2 3 4 5 6 7 8 9

s1−τ ∑
ns′

log10 s

3

3
3

3
3

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3

3 3

3

3

3

3

Figure 3.3: Cluster size distribution in four dimensions for world record size
L = 1036, using the Kirkpatrick-Stoll PRNG. The dotted line corresponds to the
asymptotic behaviour.

17

For three dimensions, we find τ = 2.190(2), which is roughly compatible with
the old literature value τ = 2.186(2) found by Jan and Stauffer in [28], and τ =
2.189(2) from Lorenz and Ziff in [34] (they investigated bond percolation, but as
τ is universal, their value is the same as for site percolation). Strangely, Gimel
et al. took τ = 2.189 as exact when analysing their 3d data, instead of trying to
extract it from the data in [18].

In four dimensions, we find τ = 2.313(2), compatible with τ = 2.313(3) from
Paul et al. [41], and τ = 2.3127(7) from Ballesteros et al. [5].

3.3 Corrections to scaling

The behaviour ns ∝ s−τ is valid only for large s. The reason is simple: For this
scaling behaviour to be exact, we need the condition that there are no inherent
length scales, or in other words: when we renormalize our system, it should look
the same (right at the critical point); if there is an inherent length, then it will be
renormalized, too, and the system looks different.

One such length is the finite size of our system; this influence, which leads to
finite-size corrections, will be covered in a seperate section.

Another length is the lattice spacing a (in this case a = 1, as we simulate
not a real system, but an idealistic model). For small clusters, which are of size
s ' a, renormalization would have a great effect (for example, a 1-cluster would
vanish after renormalization); for large clusters, this effect gets smaller. A cluster,
whose linear dimension is much larger than 1, should not be affected significantly by
small-cell renormalization, or in other words: it does not “feel” the lattice spacing
a = 1.

Small clusters should be heavily influenced by lattice spacing, thus we expect
ns for small s to deviate from the power-law ns ∝ s−τ .

Such deviations are expected to be non-universal, as they depend on microscopic
details: i. e. the deviations should be different for triangular and square lattice.

The expected behaviour for small, but not too small clusters is (cf. [2])

ns ∝ s−τ (1− k1s
−∆1) .

The correction term is called corrections to scaling, it could stem from an irrele-
vant operator or from a nonlinear scaling field (cf. [3, 7, 36]). If a nonlinear scaling
field was the only cause, one would expect quantitatively ∆1 = 55/91 ' 0.6044
in two dimensions. This simple assumption is not compatible with Monte Carlo
results.

To find good estimates for k1 and ∆1 (while we are mainly interested in ∆1), huge
lattices are very helpful, as finite-size effects make data analysis difficult (cf. fig. 3.4).

By taking into account the corrections to scaling, we also get a better estimate
for τ . This is the case, because in the plot of the corrections to scaling we only get
a straight line (for small s) when we choose k0 and τ with high precision. Small
deviations from the correct values will bend the straight line to one direction or the
other. This is shown in fig. 3.5.

Of course, when we have to extract more parameters from our data, the error
margins will become larger. As an example, Gimel et al. have taken τ = 2.189 to be
exact in three dimensions, instead of extracting it from the data. For that reason,
they found ∆1 = 0.65(2) with high precision, compared to our ∆1 = 0.60(8); but
for that reason, their error bars seem to be overly optimistic.

The results obtained from the world record simulations are: in two dimensions
∆1 = 0.70(2), ruling out the simple nonlinear scaling fields assumption as the only
source for corrections to scaling [3], as this would require ∆1 = 55/91 ' 0.6044.

18 Monte Carlo Studies

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 2 4 6 8 10 12

log10(s1−τ ∑
ns′ − 1)

log10 s

3
3

3
3

3
3

3
3

3
3

3

33
33

33
33

3

3

33
3

333

3

333

+
+

+
+

+
+

+
+

+
+

+
+

+++
++

+++++++

+
++++++

+
+

+

++

+
+

Figure 3.4: Corrections to scaling in two dimensions, L = 500032 (3), L = 4000256
(+). Because of finite-size effects, the distribution does not follow a straight line,
but at a given size of clusters, there are more than expected. For smaller L, this
happens at smaller sizes s.

-5

-4

-3

-2

-1

0

0 2 4 6 8 10 12

log10(s1−τ ∑
ns′ − 1)

log10 s

3
3

3
3

3
3

3
3

3

3

3

3

3
3333

33

3
33

3

3

3

3

3

3

3

33

3
3

3
3

3
3

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
++

++
+

+

+

++

+

+

+

+

+

++
+

+
+

+

+
+

×
×
×××

×
×
×
×××××××××

××
×××

××
×

×

×

×

×

××
×
×
×
×

×
×

Figure 3.5: Corrections to scaling for L = 4M in two dimensions. On the y-axis is
plotted the binned data divided by the asymptotic behaviour k0s

−τ . Three values
were chosen for k0: 5.21 ·1011 (3), 5.22 ·1011 (+), and 5.23 ·1011 (×). The solid line
represents the corrections to scaling power law s0.72, which is a good approximation
for the correctly chosen k0 = 5.22 · 1011.

19

Another Monte Carlo value from literature is ∆1 = 0.65(5) (MacLeod and Jan,
[35]).

In three dimensions, we find ∆1 = 0.60(8), agreeing roughly with ∆1 = 0.70(5)
found by Jan and Stauffer [28]. Gimel et al. found ∆1 = 0.65(2), but the error
seems to be overly optimistic.

In four dimensions, we find ∆1 = 0.5(1).

3.4 Influence of boundary conditions on finite-size
effects

A free surface (either by open boundary or by busbar) leads to modification of the
asymptotic power law ns ∝ s−τ . This can be understood in terms of renormalization
by the introduction of a new length-scale, the linear size of the system. Clusters of
that size “feel” this length.

For open boundaries, it is easy to imagine the effect of such a surface on clusters:
When a large cluster is placed near the surface, a part of it is cut off. Although the
cluster would extend beyond the surface, we stop the counting of sites and thus get
a too small cluster. We would expect an increase in ns above the power-law.

The effect should be stronger for larger than for small clusters: When we shift
around a small cluster on the lattice, it feels the influence of the surface only when
it is very near to the surface. In the interior of the lattice, it does not feel the
surface at all. A larger cluster does feel the surface earlier, at greater distance from
the surface; there are not so many locations in the “interior” of the lattice. So we
expect that for small clusters our power-law should not be influenced by finite-size
effects (but by corrections-to-scaling, as explained above). The finite-size effects
should become stronger the larger the clusters get. This can be seen in the data
(cf. fig. 3.2: the ns go up for large s. The drop at the end of the plot is caused by
statistical fluctuations).

For busbar, the situation is different. Busbar means that the place above the
uppermost plane is completely occupied. We assign the label 1 to the cluster formed
by this, but we do not count the sites in the zeroth plane. This is just a trick to
determine easily connectivity between uppermost and lowermost plane: If there is
a reference to label 1 in the lowermost plane, we have connectivity.

This trick with busbar imposes peculiar finite-size effects different from open
boundaries: Busbar, too, cuts clusters, but such cut clusters at the top of the
system are joined by the zeroth plane, so they disappear and form a single, very
huge cluster. Because of this disappearance, we expect that there are not as many
large clusters as expected by the power-law. This can be seen very clearly in four
dimensions (cf. fig. 3.6).

This makes busbar data rather problematic for analysis.
Open boundaries and busbar implement free surfaces in the system. As clusters

can be placed anywhere within the volume of the lattice, but feel finite-size effects
only when they touch the surface, the effects should be proportional to surface
divided by volume, or for a Ld system: proportional to 1/L.

This makes high-dimensional systems especially suitable for studying finite-size
effects: statistical fluctuations are proportional to overall system size Ld. In two
dimensions, these fluctuations dominate for small L, whereas in four dimensions
even systems with small L have many sites and thus small statistical fluctuations.

When we want to avoid the 1/L-behaviour, we have to avoid free surfaces. This
can be done by fully periodic and/or helical boundary conditions. Even in this case
we have finite-size effects: In a system of size Ld there can be no cluster larger than
Ld. But these effects are dominated by the volume of the lattice and thus should

20 Monte Carlo Studies

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 1 2 3 4 5 6 7

s1−τ ∑
ns′

log10 s

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3
3

3

3

+
+ +

+
+

Figure 3.6: Cluster size distribution in four dimensions, using Ziff’s four-tap PRNG,
L = 301. Open boundaries (+) and busbar (3). Error bars represent statistical
error.

be proportional to 1/Ld.
But fully periodic boundary conditions are expensive for the Hoshen-Kopelman

algorithm, as we have to remember the first plane after the whole simulation and
have to connect it to the last plane; even more, we must not discard labels associated
with the first plane during recycling.

Obviously, data for finite systems are easier to analyse for fully periodic boud-
nary conditions, as the disturbing finite-size effects are less strong (but still present
for small L). But even with the lower-quality data of open boundaries, we can find
good estimates for the infinite system by plotting values for systems of different
sizes against 1/L. The intersect is the value for the infinite system.

Not only the boundary conditions, but also things like the aspect ratio of the
investigated system (i. e. width divided by height in a 2d system) do have an impact
on finite-size scaling. Several publications did investigate this in detail, cf. [1, 4, 12,
33, 34, 49, 56, 57, 59].

3.5 Number density

The total number of clusters divided by the number of sites in the system is the
so called number density n(p). It is independent from the system size, but as it
depends on the microscopic details of the lattice, it is non-universal. Some number
densities are known exactly for bond percolation (cf. [6, 53]). Unfortunately, for
site percolation on square, cubic, and hypercubic lattices, such values have to be
found numerically.

The total number density is a sum of the densities for all cluster sizes. This
can be understood by looking at lattice animals in two dimensions (cf. [47, section
2.3]): To form a 1-cluster, we need one occupied site (probability p) surrounded
by four free sites (probability 1 − p), so the probability or density of 1-clusters is
p(1− p)4. For a 2-cluster we need two occupied sites and six surrounding free sites;

21

but there are two different orientations for such a 2-cluster, so the corresponding
density is 2p(1−p)6. These densities multiplied by Ld are the cluster numbers from
above. But as the number of lattice animals grows exponentially with s, we can
never calculate the exact values for large bins; and of course we cannot calculate
the infinite sum to get the total number density.

Monte Carlo studies are a useful tool to get high precision estimates for the
number density. We denote the density at the critical point by nc = n(pc).

In two dimensions, our values for nc are dominated by statistical fluctuations.
This can be seen in fig. 3.7; for L = 1M, seven independent runs for each PRNG
were done (in order to study the effects of random numbers; see below). The
scattering of the points at L = 1M is stronger than the variation of points for
different L. From this, we can calculate a number density in two dimensions of
nc = 0.02759791(5), agreeing well with the values for L = 3.5M and L = 4M (for
larger lattices, fluctuations are significantly smaller). Ziff et al. have found a value
of nc = 0.0275981(3) in [57], within errors in good agreement with the value found
here.

0.027596

0.0275965

0.027597

0.0275975

0.027598

0.0275985

500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06

nc

L

333

3

3

3

3

3
+

+

+

+

+

+

+

+

×
×
×

×
×

×

×
×

× ×

?

??

?

?

??

Figure 3.7: Number densities for various system sizes L, various PRNGs, and various
runs with different random seeds. Used PRNGs: Kirkpatrick-Stoll (3), Ziff’s four-
tap (+), ibm*16807 (×), Ziff’s six-tap (?). The solid line corresponds to the average
of the L = 1M runs except the ibm*16807 ones, the dotted lines to the statistical
error margins.

In four dimensions, the situation is different: Finite-size effects should go with
1/L, too, but as the statistical fluctuations are propotional to the number of sites
1/Ld, finite-size effects should dominate. This is indeed the case, as can be seen
in fig. 3.8: The data points only slightly scatter around the regression line ∝ 1/L.
From this plot, we can extrapolate nc = 0.0519980(2).

3.6 The problem with not-so-random numbers

As can be seen in fig. 3.7, there is a problem with one of the four utilized random
number generators, the linear congruential generator ibm=ibm*16807. While the

22 Monte Carlo Studies

0.05203

0.052035

0.05204

0.052045

0.05205

0.052055

0.0009 0.001 0.0011 0.0012 0.0013 0.0014 0.0015 0.0016

nc

1/L

3
3

3
3

3
3

33

3
3

3
3

3
3

3

Figure 3.8: Number densities for various system sizes L. The solid lines corresponds
to the extrapolation to infinity. From varying the line, we can estimate an error for
nc at ∞.

resulting number densities from the other generators agree well within statistical
fluctuations, those from the ibm*16807 deviate visibly. This is due to correlations
in the produced random numbers. The ibm*16807 is known to be problematic in
literature (cf. [48, part II, chapter 1]), and here once again this is shown clearly. The
other generators (which are all lagged fibonacci generators) seem to be compatible
with each other, so it is wise to choose the fastest one (cf. section 4.3).

3.7 Summary of obtained results

The results below are for the world record simulations.
d L τ ∆1 nc
2 4000256 187/91 0.70(2) 0.02759791(5)
3 20224 2.190(2) 0.60(8) 0.052442(2)
4 1036 2.313(2) 0.5(1) 0.0519980(2)

Chapter 4

Runtime and efficiency

When examining the speed of our program, we are interested in not only the absolute
speed for a given set of parameters, but we also want to know how the speed scales
with varying size L or varying number of processors N . And of course we expect a
dependence on the parameters like the dimensionality d, the probility p, or the size
of various data structures in memory.

A thorough study of the scaling of speed depending on all these parameters in all
combinations would require hundreds of large runs; this would eat up our precious
computing time budget and would give us no new insight into physics. From a
physicist’s point of view, it would be wasted effort.

Thus we are only interested in some rough estimates about how the program
will perform. Especially we want to know, if it “performs well”, if it does not waste
too much computing time in communication.

As the parallel program was used only on the Cray T3E of the Research Center
Jülich, all times are for that machine.

4.1 Speed per processor for the whole simulation

We are especially interested in the overall runtime for the whole simulation; espe-
cially when doing world record simulations, we must not occupy too much time on
the computer, otherwise our job could be terminated before it has finished.

A nice and useful measure for speed is the number of sites that one processor
can examine in one second. Of course, this will differ for varying lattice sizes and
varying number of processors, but we can at least roughly extrapolate.

Dim. L N Speed [MSite/s]
2 4000256 256 5.74423
2 2000064 64 6.32598
2 1000064 64 5.27195

3 20224 256 3.55194
3 12096 64 4.25586

4 1036 37 3.95107
4 924 33 4.16548
4 756 27 4.24066

Table 4.1: Overall speed per processor of the whole simulation. The PRNG used in
these simulations is Kirkpatrick-Stoll

23

24 Runtime & Efficiency

From the table, it becomes clear that the simulation of a larger lattice means less
speed (this can be explained by the fact that working on larger data structures is
slower due to machine architecture), and that for a given lattice size the simulation
on less processors means higher speed (because there is less communication nec-
cessary). At least, the speeds do not differ drastically, so the parallelization seems
to be efficient (cf. in two dimensions using the ibm*16807 generator, L = 2000128
on 128 processors with 5.99821 MSite/s and L = 2000064 on 64 processors with
6.49730 MSite/s, a difference of only eight percent).

It might be surprising that for higher dimensions the speed is comparable (albeit
slightly lower) to two dimensions, because in higher dimensions we have to check
more neighbours when investigating an occupied site. But as we do our simulations
at the critical threshold pc, and this is lower in higher dimensions, we have to
investigate less occupied sites, which accounts for higher speed.

4.2 Runtime of different parts of the simulation

We are especially interested to know, if there is too much time wasted with com-
munication, or if our program is parallelized well. Overall time for the local part
should be proportional to Ld, whereas the communication part should require time
proportional to the interface between strips, NLd−1.

In two dimensions, using the ibm*16807 generator, we can compare two runs
with L = 2000128, N = 128, and L = 2000064, N = 64. When using twice as
much processors, the local part was about one percent faster (which can be due to
statistics), whereas the time for communication rose by 84 percent. A more precise
study of these effects would require a lot more runs with differing L and N , of
course.

In four dimensions, several runs were done with different L and N , but constant
L/N = 28. These runs were done to study finite-size effects, but can also be used
to investigate performance, cf. fig. 4.1.

The run times for local and communication parts scale as expected. But what
is even more important: although for higher dimensions more communication is
neccessary, even in four dimensions the local part clearly dominates the run time,
although included in the time difference are parts like recycling and counting, which
are also needed for sequential simulations (but are complicated by the parallel struc-
ture and also require some communication). It is thus reasonable to call the method
of domain decomposition chosen here parallel efficient. Not too much time is wasted
with communication.

4.3 Impact on speed of different PRNGs

The pseudo-random number generator used in the simulation can have an impact on
runtime, too. A complex PRNG that does lengthy calculatons in order to generate
a random number slows down the simulation. In higher dimensions, the impact is
stronger; as we are mainly interested in investigating systems at the critical point
pc, and pc is lower in higher dimensions, we would produce a higher fraction of
random numbers just to find out that the site in investigation is not occupied and
no work has to be done. Thus a slow PRNG means a higher penalty for smaller p.

As described in section 3.5, some PRNGs are not suitable for simulating huge
lattices. The Kirkpatrick-Stoll or two-tap generator produces reasonable results and
is rather fast. Other lagged Fibonacci generators, as Ziff’s four-tap and six-tap, do
not produce significantly different results, but are significantly slower, especially the
four-tap one. It utilizes large taps and thus needs a large data structure to store its

25

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

750 800 850 900 950 1000 1050

t[ms]

L

3
3 3

3
3

3
3

3

3

3

+
+

+
+

+

+ +
+

+

+

2 2 2 2 2
2 2

2 2 2

Figure 4.1: Total time (+), local time (3), and total minus local time (2). The lines
are regression curves proportional to L4. The local time for L = 896, corresponding
to N = 32, lies above the expected value due to effects of the machine architecture
(thrashing of direct-mapped cache).

random numbers. On the 21164 microprocessor of the Cray T3E, this data cannot
be kept in cache and has to be reloaded from memory frequently, which slows down
computation. The six-tap generator uses a data structure that is even smaller than
that of Kirkpatrick-Stoll, but it uses a more complex operation and is thus slower,
too (but significantly faster than four-tap).

At the moment, there is no good reason to use the more complex and slower
PRNGs, as Kirkpatrick-Stoll shows no visible systematic errors. This can change,
of course, when we can simulate even larger systems (with even more powerful
computers). The four-tap and six-tap promise us, due to their more complex nature,
to be less affected by correlations in the random numbers. But this has to be checked
in simulations.

26 Runtime & Efficiency

Chapter 5

Summary and outlook

5.1 Summary

Within this diploma thesis, a novel approach to parallelizing the well-known Hoshen-
Kopelman algorithm has been chosen, suitable for simulating huge lattices in high
dimensions on massively-parallel computers with distributed memory and message
passing. This method consisted of domain decomposition of the simulated lattice
into strips perpendicular to the hyperplane of investigation that is used in the
Hoshen-Kopelman algorithm. This approach is more complicated than others, but
it allows for simulating huge lattices, even in dimensions above two.

Using the parallelized algorithm, it was possible to simulate random site per-
colation on the square (resp. cubic and hypercubic) lattice in two, three, and four
dimensions, with maximum lattice sizes of L = 4000256 (2d), L = 20224 (3d), and
L = 1036 (4d). These are the largest systems percolation was ever simulated on,
thus yielding three world records. All simulations were done on the very fast Cray
T3E at the Research Center Jülich (in the Top 500 list of the world’s most powerful
supercomputers from November 2000, it ranked 40th).

Using the data generated with the world record simulations, it was possible to
investigate some properties of percolation with high precision, i. e. critical exponents
like the Fisher exponent τ or the corrections to scaling exponent ∆1, and the number
density at the critical point nc. Comparison with values obtained by other groups
with other methods were in reasonable agreement.

During the simulation of very large lattices it became clear that some pseudo-
random number generators produced wrong results due to their correlations. When
going to even larger lattices, it could happen that even more generators show as
unsuitable.

A limiting influence for the precision of estimating some critical exponents was
found in the boundary conditions. By investigating larger and larger systems, this
influence can be weakened. Another possibility could be implementing fully periodic
boundaries.

When parallelizing algorithms that were introduced for sequential computers, it
is important to try to implement them with high parallel efficiency, in other words:
do not waste too much time with communication in comparison to the sequential
implementation. One of the major results of this thesis was to prove that even for
dimensions up to four most time was spent in local calculations, which means a
high parallel efficiency. Together with the possibility of using many processors in
parallel, this yielded a situation where it was possible to quickly simulate a large
system with a given set of parameters and to receive results within hours, while the
same simulation on a sequential computer could have taken a week to finish.

27

28 Summary & Outlook

The capability of simulating very large lattices allows us to find some very precise
results for critical properties of percolation, additionally to those investigated here,
just by investing more computing time (and some effort on data analysis).

5.2 Outlook

There remain several things that could and should be done, but cannot be covered
within this thesis due to limited time.

As the program was implemented for two, three, and four dimensions, it would
be rather straightforward to go to even higher dimensions. But then the overhead of
communication versus the local calculations would grow, so this cannot be stretched
too far. It would be a good idea for higher dimensions to implement some memory-
saving tricks (like 32 bit compound labels instead of 64 bit plain labels, a unification
of the local and global label storages, and some more).

A significant improvement in quality of the obtained results should be possible
by the implementation of fully periodic boundary conditions, instead of leaving the
top and bottom plane open, as this should reduce the finite-size effects drastically.
Especially better estimates for the corrections to scaling should be possible. On the
other hand, such fully periodic boundaries consume more memory and time, but it
should be worth the expense. In general, the investigation of things like boundary
conditions, aspect ratio of finite systems, and other finite-size influences, could yield
new insight even into the characteristics of infinite systems.

All simulations carried out for this thesis were done right at the critical threshold
pc. Of course, it is possible to move away from pc, and thus examine additional
critical exponents, and even the scaling function f(z). This will require a lot of
computing time, but no new code.

Research in percolation theory is far from the end, and using Monte Carlo tech-
niques with new algorithms on parallel computers can help to clarify many still
open questions.

Appendices

29

Appendix A

Acknowledgements

First and foremost I would like to thank Prof. Stauffer for suggesting the topic of
my diploma thesis and for his care, which consisted of a combination of laissez-
faire and impetus. Next I would like to thank Profs. Jan and Ziff for invaluable
ideas and sportsmanlike competition. I also appreciated the Wednesday seminars
with their fruitful discussions on lots of different topics, and would like to thank all
participants. And last but not least, I would like to thank my parents for their love
and support.

31

32 Acknowledgements

Appendix B

Bibliography

[1] M. Acharyya, D. Stauffer, Effects of boundary conditions on the critical
spanning probability, Int. J. Mod. Phys. C 9, 643 (1998).

[2] J. Adler, M. Moshe, V. Privman, Corrections to scaling for percolation,
in: [13], pp. 397–423.

[3] A. Aharony, M. E. Fisher, Nonlinear scaling fields and corrections to scaling
near criticality, Phys. Rev. B 27, 4394 (1983).

[4] A. Aharony, D. Stauffer, Test of universal finite-size scaling in two-
dimensional site percolation, J. Phys. A 30, L301 (1997).

[5] H. G. Ballesteros, L. A. Fernández, V. Mart́in-Mayor, A. Muñoz

Sudupe, G. Parisi, J. J. Ruis-Lorenzo, Measures of critical exponents in
the four-dimensional site percolation, Phys. Lett. B 400, 346 (1997).

[6] R. J. Baxter, H. N. V. Temperley, S. E. Ashley, Triangular Potts model
at its transition temperature, and related models, Proc. R. Soc. London A 358,
535 (1978).

[7] K. Binder, D. Stauffer, Monte Carlo Studies of “Random” Systems, in:
K. Binder (Ed.), Applications of the Monte Carlo Method, 2nd ed. (Springer,
Heidelberg, 1987), pp. 241–275.

[8] S. R. Broadbent, Discussion on symposium on Monte Carlo methods,
J. Roy. Statist. Soc. B 16, 68 (1954).

[9] S. R. Broadbent, J. M. Hammersley, Percolation Processes. Crystals and
mazes, Proc. Cambridge Philos. Soc. 53, 629 (1957).

[10] A. Bunde, S. Havlin (Eds.), Proceedings of the International Conference on
Percolation and Disordered Systems: Theory and Applications, Physica A 266
(1999).

[11] A. Bunde, S. Havlin (Eds.), Fractals and Disordered Systems, (Springer,
Heidelberg, 1991).

[12] J. L. Cardy, Critical percolation in finite geometries, J. Phys. A 25, L201
(1992).

[13] G. Deutscher, R. Zallen, J. Adler, Percolation structure and processes,
Annals of the Israel Physical Society 5, (Adam Hilger, Bristol, 1983).

33

34 Bibliography

[14] M. E. Fisher, The theory of condensation and the critical point, Physics 3,
255 (1967).

[15] M. Flanigan, P. Tamayo, A Parallel Cluster Labeling Method for Monte
Carlo Dynamics, Int. J. Mod. Phys. C 3, 1235 (1992).

[16] M. Flanigan, P. Tamayo, Parallel cluster labeling for large-scale Monte
Carlo simulations, Physica A 215, 461 (1995).

[17] P. J. Flory, Molecular Size Distribution in Three Dimensional Polymers.
I. Gelation, pp. 3083–3090, II. Trifunctional Branching Units, pp. 3091–3096,
III. Tetrafunctional Branching Units, pp. 3096–3100, J. Am. Chem. Soc. 63
(1941).

[18] J.-C. Gimel, T. Nicolai, D. Durand, Size distribution of percolating clus-
ters on cubic lattices, J. Phys. A 33, 7687 (2000).

[19] G. R. Grimmett, Percolation, in: J.-P. Pier (ed.), Development of Mathe-
matics 1950–2000, (Birkhäuser, Basel, 2000), pp. 547–575.

[20] U. Gropengießer, Numerical Methods for the Determination of the Prop-
erties of Phase Transitions and Ground States of Ising and Ising Spin Glass
Systems, Inaugural-Dissertation, Universität zu Köln, 1995.

[21] F. Gutbrod, New trends in pseudo-random number generation, in:
D. Stauffer (Ed.), Annual Reviews of Computational Physics VI (World
Scientific, Singapore, 1999), pp. 203–257.

[22] R. Hackl, H.-G. Matuttis, J. M. Singer, T. Husslein, I. Mor-

genstern, Parallelization of the 2D Swendsen-Wang Algorithm,
Int. J. Mod. Phys. C 4, 1117 (1993).

[23] J. M. Hammersley, Percolation Processes. The connectivity constant,
Proc. Cambridge Philos. Soc. 53, 642 (1957).

[24] J. M. Hammersley, Percolation Processes. Lower bounds for the critical prob-
ability, Ann. Math. Statist. 28, 790 (1957).

[25] J. M. Hammersley, D. C. Handscomb, Monte Carlo Methods, (Methuen,
London, 1964).

[26] J. M. Hammersley, Origins of percolation theory, in: [13], pp. 47–57.

[27] J. Hoshen, R. Kopelman, Percolation and cluster distribution. I.
Cluster multiple labeling technique and critical concentration algorithm,
Phys. Rev. B 14, 3438 (1976).

[28] N. Jan, D. Stauffer, Random Site Percolation in Three Dimensions,
Int. J. Mod. Phys. C 9, 341 (1998).

[29] J. Kertész, D. Stauffer, Swendsen-Wang Dynamics of Large 2D Critical
Ising Models, Int. J. Mod. Phys. C 3, 1275 (1992).

[30] S. Kirkpatrick, E. P. Stoll, J. Comput. Phys. 40, 517 (1981).

[31] P. L. Leath, Cluster size and boundary distribution near percolation thresh-
old, Phys. Rev. B 14, 5046 (1976).

[32] P. L. Leath, Cluster shape and critical exponents near Percolation Threshold,
Phys. Rev. Lett. 36, 921 (1976).

35

[33] C. D. Lorenz, R. M. Ziff, Universality of the excess number of clus-
ters and the crossing probability function in three-dimensional percolation,
J. Phys. A 31, 8147 (1998).

[34] C. D. Lorenz, R. M. Ziff, Precise determination of the bond percolation
thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices,
Phys. Rev. E 57, 230 (1998).

[35] S. MacLeod, N. Jan, Large Lattice Simulation of Random Site Percolation,
Int. J. Mod. Phys. C 9, 289 (1998).

[36] A. Margolina, Z. Djordjevic, H. E. Stanley, D. Stauffer, Corrections
to scaling for branched polymers and gels, Phys. Rev. B 28, 1652 (1983).

[37] H. Nakanishi, H. E. Stanley, Scaling studies of percolation phenomena in
systems of dimensionality two to seven: Cluster numbers, Phys. Rev. B 22,
2466 (1980).

[38] B. Nienhuis, E. K. Riedel, M. Schick, Magnetic exponents of the two-
dimensional q-state Potts model, J. Phys. A 13, L189 (1980).

[39] B. Nienhuis, Analytical solution of the two leading exponents of the dilute
Potts model, J. Phys. A 15, 199 (1982).

[40] M. P. M. den Nijs, A relation between the temperature exponents of the
eight-vertex and q-state Potts model, J. Phys. A 12, 1857 (1979).

[41] G. Paul, R. M. Ziff, H. E. Stanley, Precolation threshold, Fisher
exponent, and shortest path exponent for 4 and 5 dimensions, arXiv:
cond-mat/0101136 (2001).

[42] R. P. Pearson, Conjecture for the extended Potts model magnetic eigenvalue,
Phys. Rev. B 22, 2579 (1980).

[43] M. Sahimi, Applications of Percolation Theory, (Taylor & Francis, London,
1994).

[44] H. E. Stanley, J. S. Andrade Jr., S. Havlin, H. A. Makse, B. Suki,
Percolation phenomena: a broad-brush introduction with some recent applica-
tions to porous media, liquid water, and city growth, in: [10], pp. 5–16.

[45] D. Stauffer, Violation of dynamical scaling for randomly dilute Ising ferro-
magnets near percolation threshold, Phys. Rev. Lett. 35, 394 (1975).

[46] D. Stauffer, Scaling theory of percolation clusters, Phys. Reports 54, 1
(1979).

[47] D. Stauffer, A. Aharony, Introduction to Percolation Theory, 2nd ed.,
(Taylor & Francis, London, 1992).

[48] D. Stauffer, F. W. Hehl, N. Ito, V. Winkelmann, J. G. Zabolitzky,
Computer Simulation and Computer Algebra, 3rd ed., (Springer, Heidelberg,
1993).

[49] D. Stauffer, Finite-size effect in seven-dimensional percolation, Phys-
ica A 210, 317 (1994).

[50] D. Stauffer, World records in the size of simulated Ising models,
Braz. J. Phys. 30, 787 (2000).

36 Bibliography

[51] P. Tamayo, Magnetization relaxation to equilibrium on large 2D Swendsen-
Wang Ising models, Physica A 201, 543 (1993).

[52] R. C. Tausworthe, Math. Comput. 19, 201 (1965).

[53] H. N. V. Temperley, E. H. Lieb, Relations between the ‘percolation’
and ‘colouring’ problem and other graph-theoretical problems associated with
regular planar lattices: some exact results for the ‘percolation’ problem,
Proc. R. Soc. London A 322, 251 (1971).

[54] J. M. Teuler, J.-C. Gimel, A direct parallel implementation of
the Hoshen-Kopelman algorithm for distributed memory architectures,
Comp. Phys. Comm. 130, 118 (2000).

[55] A. Ticona, D. Stauffer, Percolation cluster numbers in seven dimensions,
Physica A 290, 1 (2001).

[56] R. M. Ziff, Effective boundary extrapolation length to account for finite-size
effects in the percolation crossing function, Phys. Rev. E 54, 2547 (1996).

[57] R. M. Ziff, S. R. Finch, V. S. Adamchik, Universality of finite-size correc-
tions to the number of critical percolation clusters, Phys. Rev. Lett. 79, 3447
(1997).

[58] R. M. Ziff, Four-tap shift-register-sequence random-number generators, Com-
put. in Phys. 12, 385 (1998).

[59] R. M. Ziff, C. D. Lorenz, P. Kleban, Shape-dependent universality in
percolation, in: [10], pp. 17–26.

Appendix C

Code of programs

C.1 Parallel program

Implementing the Hoshen-Kopelman algorithm on massively-parallel computers is
a difficult thing, so it is no surprise that the resulting source-code is long, complex,
and hard to understand. Before reading this program, it is important to understand
how the domain decomposition works. This is covered in detail in chapter 2.

The code is written in standard Fortran 90, with some Cray-specific system
calls for communication: shmem put() delivers data from one processor to another,
shmem get() fetches data; barrier() and shmem barrier all() are used to syn-
chronize all processors, with shmem barrier all() also waiting for completion of
all remote write operations (i. e. shmem put()); shmem n pes() gives the number
of processors that the job is running on, shmem my pe() gives the identity of the
processor the local thread is running on; the return value of shmem my pe() is the
only way for the program to distinguish the different processors, as the code and
all initial data is the same for all threads in the job.

The source-code is in fixed format (the coloumns have special meaning). The
small slanted numbers on the left side of the listing are simply a guide to the eye
and are not part of the program; they must not be mistaken with labels, which are
part of the program and are typeset in the same font as the rest of the code.

The code presented here is the implementation for four dimensions, a more
general case than three or two dimensions. For this reason, the code for two and
three dimensions can be derived easily by just commenting out that portions of the
code that deal with the fourth (or third) dimension. But as no one would like to
type in about 1600 lines, it would be easier to obtain the code from the author,
along with ready-to-use two- and three-dimensional versions.

One last note: There seems to be a bug in the code that only strikes when the
size of a strip (L/N) becomes too small, smaller than ca. 30 sites; in such a case,
an infinite loop can happen during the simulation. But for larger strip sizes, this
never happens; two and three dimensions were never affected, due to the large ratio
L/N .

c $Id: pperc4d.f,v 1.1 2001/02/25 13:22:47 dt Exp $

c Parallel implementation of:

c Random site percolation in up to seven dimensions. Counts clusters and

5 c determines connectivity. Uses recycling of labels.

c This implementation is valid only for FOUR DIMENSIONS.

c Uses domain decomposition into vertical strips, with one processor per

c strip. We are looking for a cluster percolating from left to right.

10

38 Code

c local(i) negative

c and even: local rootlabel with -local(i)/2 sites in the cluster.

c local(i) negative

c and odd: pointer to global rootlabel -local(i)/2

15 c local(i) positive: points to other label

c local(i) zero: free label, can be reused

parameter (ISEED=1, LSTRIP=14, NSTRIP=64, L=LSTRIP*NSTRIP,

* IDIM=4, NSYS=L**IDIM, LLINE=L**(IDIM-2),

20 * LPLANE=LLINE*LSTRIP,

* MAXLOC=38e6, MAXGLO=2e6, MAXPR=1e5,

* P=0.196889, MAXBIN=45, MBP1=MAXBIN+1,

* DIVLIMMAX=0.70, LIMIT=DIVLIMMAX*MAXLOC,

* LIMITGLO=DIVLIMMAX*MAXGLO, NRECFREQ=1)

25 logical ALLOW_GLOBAL_RECYC

parameter (ALLOW_GLOBAL_RECYC=.true.)

dimension plane(1-LLINE:LPLANE), local(MAXLOC), ns(0:MAXBIN)

dimension global(MAXGLO), globle(MAXGLO), globri(MAXGLO)

dimension prtlda(MAXPR), prtrda(MAXPR), prrcda(MAXPR)

30 dimension ks_rnd(0:255)

dimension border_send(1:LLINE), border_recv(1:LLINE)

data ns/MBP1*0/

common /t3e/ prtlda, prtrda, prrcda, border_send, border_recv,

35 * ns, prtlpt, prtrpt, prrcpt,

* nonloc, relax, conn, chi,

* comm_logvar, comm_intvar, comm_realvar

integer plane, local, global, globle, globri, glolab

40 integer locmin, locmax, glomin, glomax

integer prtlda, prtrda, prtlpt, prtrpt, prrcda, prrcpt

integer gleft, gright, gone, gtwo

integer pe_le, pe_ri, pe_this

integer shmem_n_pes, shmem_my_pe

45 integer comm_intvar

logical conn, left, top, back, nonloc, relax, comm_logvar

logical fourth, accum_log

real*8 fli, chi, chisum, comm_realvar

integer ks_idx

50 integer time, tim_loc, tim_prex, tim_nbex, tim_perc,

* tim_glob, tim_fullrelax, tim_detconn, tim_loccount,

* tim_concen, tim_globcount, tim_label1, tim_recyc

integer nrecyc, rec_countdown

logical want_recycling, once_more

55 integer ks_rnd

integer IP

integer border_send, border_recv

if(shmem_my_pe() .eq. 0) then

60 print *, ’# Using Kirkpatrick-Stoll PRNG’

if(ALLOW_GLOBAL_RECYC) then

print *, ’# Global recycling on’

end if

print *, ’# Size of system: ’, L, ’ ** ’, IDIM

65 print *, ’# Number of strips: ’, NSTRIP

print *, ’# Initial random seed: ’, ISEED

print *, ’# Probability: ’, P

end if

39

tim_glob=irtc()

70 IP=2147483648.0d0*(4.0d0*P-2.0d0)*2147483648.0d0

rcplog=1.0d0/dlog(2.0d0)

conn=.true.

maxclu=0

ninfclu=0

75 nocc = 0

nrecyc = 0

rec_countdown = NRECFREQ

if(shmem_n_pes() .ne. NSTRIP) stop 3

80 pe_this = shmem_my_pe()

pe_le = pe_this - 1

pe_ri = pe_this + 1

if(pe_this .eq. 0) pe_le = NSTRIP - 1

if(pe_this .eq. NSTRIP - 1) pe_ri = 0

85

call ks_warmup()

c In the beginning, all labels are reusable

do 10 i = 1, MAXLOC

90 local(i) = 0

10 continue

locmin = 2

do 11 i = 1, MAXGLO

global(i) = 0

95 globle(i) = 0

globri(i) = 0

11 continue

glomin = 1

100 c In the beginning, there is no pairing information

prtlpt = 0

prtrpt = 0

c To determine connectivity, we use the easiest method: The zeroth

105 c plane is set to be completely the cluster with number 1, which

c means that if in the end there appears a cluster 1 in the last plane,

c we have connectivity and cluster 1 is the infinite cluster.

c By this, cluster 1 percolates through the whole system horizontically

c in the beginning. We must thus look for vertcial connectivity only,

110 c because otherwise we would get wrong results. During the investigation,

c cluster 1 may cause trouble just because of this fact. Thus we should

c think about handling cluster 1 in a special way during relaxation.

c And of course we must never re-use label 1 after recycling. We achieve

c this by keeping locmin always larger than 1.

115

c Instead, we now look for connectivity in horizontically percolating

c clusters and thus leave the zeroth plane free.

do 15 i = 1, LPLANE

plane(i) = MAXLOC ! for busbar, set to 1

120 15 continue

glomin = 1

! For busbar, set plane() to 1 and:

! local(1) = -3

! global(1) = -1

125 ! globle(1) = 1

! globri(1) = 1

40 Code

! glomin = 2

nonroo = 0 ! non-root-labels connected to global clusters

130 numroo = 0 ! local root-labels

numglo = 0 ! global root-labels in one strip

numgloclu = 0 ! number of global clusters

numsit = 0 ! number of occupied sites

chi = 0.0d0

135

tim_loc = 0

tim_nbex = 0

tim_prex = 0

tim_recyc = 0

140 tim_perc = irtc()

do 20 ivert = 1, L

i = 1

c Clear the borders, because we do not know yet, if there are

c neighbouring clusters in the neighbouring strips.

145 do j = 1-LLINE, 0

plane(j) = MAXLOC

end do

c Do the local step

time = irtc()

150 do 30 ihoriz = 1, LPLANE

ks_idx = iand(ks_idx + 1, 255)

ks_rnd(ks_idx) = ieor(ks_rnd(iand(ks_idx-103, 255)),

* ks_rnd(iand(ks_idx-250, 255)))

if(ks_rnd(ks_idx) .lt. IP) then

155 c The site in investigation is occupied.

nocc = nocc + 1

top = (plane(i) .lt. MAXLOC)

back = (plane(i-1) .lt. MAXLOC)

fourth=(plane(i-L) .lt. MAXLOC)

160 left = (plane(i-LLINE) .lt. MAXLOC)

accum_log = (left.or.top.or.back.or.fourth)

if(.not. accum_log) then

c All neighbours are free, so a new cluster starts.

c First we have to find a free label.

165 31 nrlab = locmin

locmin = locmin + 1

if(locmin .eq. MAXLOC) stop 1

if(local(nrlab) .ne. 0) goto 31

plane(i) = nrlab

170 local(nrlab) = -2

else

c At least one of the neighbours are occupied, which means work.

c First we determine the rootlabels for all neighbours.

nleft = MAXLOC

175 ntop = MAXLOC

nback = MAXLOC

nfourth=MAXLOC

c The label of the back neighbour (if occupied) is certainly a

c rootlabel, either local or global.

180 if(back) nback = plane(i-1)

c With the other neighbours, that need not be the case.

if(top) then

ntop = plane(i)

if(local(ntop) .gt. 0) then

41

185 32 ntop = local(ntop)

if(local(ntop) .gt. 0) goto 32

local(plane(i)) = ntop

endif

endif

190 if(fourth) then

nfourth = plane(i-L)

if(local(nfourth).gt.0) then

34 nfourth = local(nfourth)

if(local(nfourth) .gt. 0) goto 34

195 local(plane(i-L)) = nfourth

endif

endif

if(left) then

nleft = plane(i-LLINE)

200 if(local(nleft) .gt. 0) then

33 nleft = local(nleft)

if(local(nleft) .gt. 0) goto 33

local(plane(i-LLINE)) = nleft

end if

205 end if

c Now that we have the rootlabels for the neighbouring

c sites, we have to do some examination. If both labels are

210 c local root-labels, life is easy. If only one of the labels

c is a global label, life becomes difficult. If both labels

c are global, we have a lot of work to do.

c First find the smallest rootlabel.

215 new = min0(nleft, ntop, nback, nfourth)

c We count the sites within the cluster negative in ici.

c Do not forget to divide site numbers by two.

ici = -1

220 if(left) then

nonloc=.false.

nrlab = local(nleft)

if(iand(nrlab, 1) .eq. 1) then

nonloc = .true.

225 nrlab = global(-nrlab/2)

endif

ici = ici + nrlab/2

if(new .ne .nleft) then

c The cluster coming from left does not have the smallest

230 c label. Thus it will be transferred to a non-root-label.

c But we have to differentiate between two cases: if it

c is a local rootlabel, we just redirect the label.

c If it is a global rootlabel, we have to look if the smallest

c label is a global rootlabel. If yes, we have to add pairing

235 c information. If no, we have to tranform the smallest label

c to a global rootlabel.

if(nonloc) then

if(iand(local(new), 1) .eq. 1) then

c Rootlabel "new" is global. Add pairing information.

240 c Redirect "nleft" to "new".

c Pairing info for left neighbour:

gone = globle(-local(new)/2)

42 Code

gtwo = globle(-local(nleft)/2)

if(gone .ne. gtwo) then

245 gleft = min0(gone, gtwo)

gone = max0(gone, gtwo)

globle(-local(new)/2) = gleft

if(gone .ne. MAXLOC) then

prtlpt = prtlpt + 2

250 if(prtlpt .ge. MAXPR) stop 2

prtlda(prtlpt-1) = gleft

prtlda(prtlpt) = gone

endif

endif

255 c Pairing info for right neighbour:

gone = globri(-local(new)/2)

gtwo = globri(-local(nleft)/2)

if(gone .ne. gtwo) then

gright= min0(gone, gtwo)

260 gone = max0(gone, gtwo)

globri(-local(new)/2) = gright

if(gone .ne. MAXLOC) then

prtrpt = prtrpt + 2

if(prtrpt .ge. MAXPR) stop 2

265 prtrda(prtrpt-1) = gright

prtrda(prtrpt) = gone

endif

endif

c After this pairing, redirect "nleft" to "new"

270 local(nleft) = new

else

c Rootlabel "new" is local. Transform it to global.

c We do this by pointing label "new" to the global label

c of "nleft". "nleft" then becomes a pointer to "new".

275 c Of course, we have to count the sites in local cluster

c "new". And we have to take care that the sites in the

c global cluster are not counted again.

ici = ici + local(new)/2

local(new) = local(nleft)

280 local(nleft) = new

c We enter a one to show that this label must not be

c recycled, but it contains no sites, as 1/2 = 0.

global(-local(new)/2) = -1

endif

285 else

local(nleft) = new

endif

endif

endif

290 if(top .and. (nleft .ne. ntop)) then

c If ntop = nleft, then we already have treated the cluster.

c There is no need to investigate it once again.

c If ntop =/= nleft, we have to investigate that cluster.

nonloc = .false.

295 nrlab = local(ntop)

if(iand(nrlab, 1) .eq. 1) then

nonloc = .true.

nrlab = global(-nrlab/2)

endif

300 ici = ici + nrlab/2

43

if(new .ne. ntop) then

if(nonloc) then

if(iand(local(new), 1) .eq. 1) then

gone = globle(-local(new)/2)

305 gtwo = globle(-local(ntop)/2)

if(gone .ne .gtwo) then

gleft = min0(gone, gtwo)

gone = max0(gone, gtwo)

globle(-local(new)/2) = gleft

310 if(gone .ne. MAXLOC) then

prtlpt = prtlpt + 2

if(prtlpt .ge. MAXPR) stop 2

prtlda(prtlpt-1) = gleft

prtlda(prtlpt) = gone

315 endif

endif

gone = globri(-local(new)/2)

gtwo = globri(-local(ntop)/2)

if(gone .ne. gtwo) then

320 gright = min0(gone, gtwo)

gone = max0(gone, gtwo)

globri(-local(new)/2) = gright

if(gone .ne. MAXLOC) then

prtrpt = prtrpt + 2

325 if(prtrpt .ge. MAXPR) stop 2

prtrda(prtrpt-1) = gright

prtrda(prtrpt) = gone

endif

endif

330 local(ntop) = new

else

c If new=nleft, sites in new were already counted.

c If new=nback AND new=/=nleft, we have to count them now.

if(new .ne. nleft) ici = ici + local(new)/2

335 local(new) = local(ntop)

local(ntop) = new

global(-local(new)/2) = -1

endif

else

340 local(ntop) = new

endif

endif

endif

if(fourth.and.(nleft.ne.nfourth).and.

345 * (ntop.ne.nfourth)) then

nonloc = .false.

nrlab = local(nfourth)

if(iand(nrlab,1).eq.1) then

nonloc = .true.

350 nrlab = global(-nrlab/2)

endif

ici = ici + nrlab/2

if(new.ne.nfourth) then

if(nonloc) then

355 if(iand(local(new),1).eq.1) then

gone = globle(-local(new)/2)

gtwo = globle(-local(nfourth)/2)

if(gone .ne. gtwo) then

44 Code

gleft = min0(gone, gtwo)

360 gone = max0(gone, gtwo)

globle(-local(new)/2) = gleft

if(gone .ne. MAXLOC) then

prtlpt = prtlpt + 2

if(prtlpt .ge. MAXPR) stop 2

365 prtlda(prtlpt-1) = gleft

prtlda(prtlpt) = gone

endif

endif

gone = globri(-local(new)/2)

370 gtwo = globri(-local(nfourth)/2)

if(gone .ne. gtwo) then

gright = min0(gone, gtwo)

gone = max0(gone, gtwo)

globri(-local(new)/2) = gright

375 if(gone .ne. MAXLOC) then

prtrpt = prtrpt + 2

if(prtrpt .ge. MAXPR) stop 2

prtrda(prtrpt-1) = gright

prtrda(prtrpt) = gone

380 endif

endif

local(nfourth) = new

else

if((new.ne.nleft).and.(new.ne.ntop))

385 * ici = ici + local(new)/2

local(new) = local(nfourth)

local(nfourth) = new

global(-local(new)/2) = -1

endif

390 else

local(nfourth) = new

endif

endif

endif

395 if(back.and.(nleft.ne.nback).and.(ntop.ne.nback)

* .and.(nfourth.ne.nback)) then

nonloc = .false.

nrlab = local(nback)

if(iand(nrlab, 1) .eq. 1) then

400 nonloc = .true.

nrlab = global(-nrlab/2)

endif

ici = ici + nrlab/2

if(new .ne. nback) then

405 if(nonloc) then

if(iand(local(new), 1) .eq. 1) then

gone = globle(-local(new)/2)

gtwo = globle(-local(nback)/2)

if(gone .ne .gtwo) then

410 gleft = min0(gone, gtwo)

gone = max0(gone, gtwo)

globle(-local(new)/2) = gleft

if(gone .ne. MAXLOC) then

prtlpt = prtlpt + 2

415 if(prtlpt .ge. MAXPR) stop 2

prtlda(prtlpt-1) = gleft

45

prtlda(prtlpt) = gone

endif

endif

420 gone = globri(-local(new)/2)

gtwo = globri(-local(nback)/2)

if(gone .ne. gtwo) then

gright = min0(gone, gtwo)

gone = max0(gone, gtwo)

425 globri(-local(new)/2) = gright

if(gone .ne. MAXLOC) then

prtrpt = prtrpt + 2

if(prtrpt .ge. MAXPR) stop 2

prtrda(prtrpt-1) = gright

430 prtrda(prtrpt) = gone

endif

endif

local(nback) = new

else

435 local(new) = local(nback)

local(nback) = new

global(-local(new)/2) = -1

endif

else

440 local(nback) = new

endif

endif

endif

c Now write back the number of sites in the cluster to label "new".

445 c We have to distinguish the cases that "new" is local or global.

ici = ici * 2

if(iand(local(new), 1) .eq. 1) then

global(-local(new)/2) = ici - 1

else

450 local(new) = ici

endif

plane(i) = new

endif

else

455 c The site in investigation is not occupied.

plane(i) = MAXLOC

endif

i = i + 1

30 continue

460 tim_loc = tim_loc + irtc() - time

c After calculating the local part, we determine if recycling is

c necessary. As recycling is an expensive process and the other

c processors cannot continue with work while one processor is

465 c recycling, we recycle in all strips simultaneously. This means

c that we must recycle if at least one processor runs out of

c memory; so we have to communicate. On the other hand, we don’t

c want to do this communication after every local step, thus we do

c it only after all NRECFREQ steps. A processor sets want_recycling to

470 c true if it runs out of memory (this is the case when

c locmin .ge. LIMIT). If at least one processor sets this flag,

c recycling occurs in all strips.

time = irtc()

46 Code

475 rec_countdown = rec_countdown - 1

if(rec_countdown .eq. 0) then

rec_countdown = NRECFREQ

want_recycling=((locmin.ge.LIMIT).or.(glomin.ge.LIMITGLO))

call glob_or_logical(want_recycling)

480 if(want_recycling) then

c Do recycling.

nrecyc = nrecyc + 1

call full_relax()

call reclass_plane()

485 c Next tell our neighbours to which labels in their strips our

c global rootlabels point and ask them, what the corresponding

c rootlabels are. We then set our global labels to point to these

c rootlabels in the neighbouring strips. We do that for all our

c global labels and talk to our left and right neighbour. After this,

490 c we can delete all non-root-labels in all strips.

call prep_rec_glo()

c According to theory, we should now be allowed to

c DELETE ALL NON-ROOT-LABELS, as we have removed all local AND

c global references to non-root-labels.

495 c In preparation for recycling ’dead’ local root-labels, we mark all

c local root-labels by inverting their sign; we mark all global

c labels, so that we can delete global labels that are no longer

c referenced by local().

500 do j = 1, MAXLOC

li = local(j)

if(li .ge. 0) then

! is non-root:

local(j) = 0

505 else if(iand(li, 1) .eq. 0) then

! is root and local:

local(j) = -li

else

! is root and global

510 nrlab = -li/2

li = global(nrlab)

if(li .lt. 0) global(nrlab) = -li

end if

end do

515 c Now walk through plane and flip back all root-labels that are

c still in use (don’t flip labels twice or flip global labels by

c accident; first look if the value of local() is positive, then

c make it negative).

do j = 1, LPLANE

520 nrlab = plane(j)

if(local(nrlab).gt.0) local(nrlab) = -local(nrlab)

end do

c Throw away all root-labels that are still positive, as they are

c no longer in use. Do not forget to put them into the bins.

525 do j = 1, MAXLOC

if(local(j).gt.0) then

numroo = numroo + 1

numsit = numsit + local(j)/2

fli = local(j)/2

530 ibin = dlog(fli)*rcplog+0.00001d0

if(ibin .le. MAXBIN) ns(ibin) = ns(ibin) + 1

chi = chi + fli * fli

47

local(j) = 0

end if

535 end do

locmin = 2

c Now flip back global labels that are still referenced by local()

c and delete all others.

do j = 1, MAXGLO

540 nrlab = global(j)

if(nrlab .gt. 0) then

global(j) = -nrlab

else

global(j) = 0

545 end if

end do

glomin = 2

if(ALLOW_GLOBAL_RECYC) then

call barrier()

550 c We walk through all our living global labels and if they

c have left neighbours, we tell these neighbours that our label

c points to them, so that they can update their globri().

j = 0

prtlpt = 0

555 do

do

j = j + 1

if(j.gt.MAXLOC) exit

if(local(j).ge.0.or.iand(local(j),1).eq.0) cycle

560 k = -local(j)/2

if(globle(k).ne.MAXLOC) then

prtlpt = prtlpt + 2

prtlda(prtlpt-1) = globle(k)

prtlda(prtlpt) = j

565 if(prtlpt.gt.MAXPR-5) exit

end if

end do

once_more = .false.

if(j.lt.MAXLOC) once_more = .true.

570 prtlpt = prtlpt + 1 ! add sentinel

prtlda(prtlpt) = 0

call shmem_put(prrcda(1),prtlda(1),prtlpt,pe_le)

call barrier()

prtlpt = 0

575 prrcpt = 0

do

prrcpt = prrcpt + 2

if(prrcpt.gt.MAXPR) STOP 8 !CANTHAPPEN

if(prrcda(prrcpt-1).eq.0) exit

580 nrlab = prrcda(prrcpt-1)

do

if(local(nrlab).le.0) exit

nrlab = local(nrlab)

end do

585 if(local(nrlab).eq.0) cycle

k = -local(nrlab)/2

if(globri(k).eq.MAXLOC) then

globri(k) = prrcda(prrcpt)

end if

590 end do

48 Code

call glob_or_logical(once_more)

if(.not. once_more) exit

end do

! Do global recycling by reduction

595 ! First we mark living global labels

do j = 1, LPLANE

nrlab = plane(j)

if((nrlab .ne. MAXLOC)

* .and. (iand(local(nrlab),1).eq.1)) then

600 nrlab = -local(nrlab)/2

if(global(nrlab).lt.0) global(nrlab) = -global(nrlab)

end if

end do

! Now we have marked all living global labels by inverted sign.

605 ! All global labels that are dead in our strip are not flipped.

! We can recycle only global labels, that are dead and have no

! right neigbour. In the next sweep, we flip roles: Dead labels

! without right neighbour become positive, others negative.

do j = 1, MAXGLO

610 if(global(j).eq.0) cycle

if(global(j).gt.0) then

global(j)=-global(j)

else

if((globle(j).ne.MAXLOC).and.

615 * (globri(j).eq.MAXLOC)) global(j)=-global(j)

end if

end do

! All labels that shall be recycled are now positive in global(),

! all others are negative (or zero if not occupied at all).

620 j = 0

icount = 0

prtlpt = 0

do

icount = icount + 1

625 do

j = j + 1

if(j .gt. MAXLOC) exit

if(local(j).ge.0 .or. iand(local(j),1).eq.0) cycle

k = -local(j)/2

630 if(global(k).gt.0) then

prtlpt = prtlpt + 2

prtlda(prtlpt-1) = globle(k)

prtlda(prtlpt) = -global(k)

global(k) = 0

635 local(j) = 0

if(prtlpt.gt.MAXPR-5) exit

end if

end do

once_more = .false.

640 if(j.lt.MAXLOC) once_more = .true.

! Add sentinel

prtlpt = prtlpt + 1

prtlda(prtlpt) = 0

call barrier()

645 call shmem_put(prrcda(1), prtlda(1), prtlpt, pe_le)

call barrier()

! Walk through received data and put it into our global()

prtlpt = 0

49

prrcpt = 0

650 do

prrcpt = prrcpt + 2

if(prrcpt.gt.MAXPR) STOP 8 !CANTHAPPEN

if(prrcda(prrcpt-1).eq.0) exit

nrlab = prrcda(prrcpt-1)

655 do

if(nrlab.eq.0) exit

if(local(nrlab).lt.0) exit

nrlab = local(nrlab)

end do

660 if(nrlab.eq.0) cycle

k = -local(nrlab)/2

global(k) = (global(k)/2 + prrcda(prrcpt)/2) * 2 - 1

globri(k) = MAXLOC

if(globle(k).eq.MAXLOC) then

665 ! Convert our label back to local.

local(nrlab) = global(k) + 1

global(k) = 0

end if

end do

670 call glob_or_logical(once_more)

if(.not. once_more) exit

end do

c We walk through all our living global labels and if they

c have left neighbours, we tell these neighbours that our label

675 c points to them, so that they can update their globri().

j = 0

prtlpt = 0

do

do

680 j = j + 1

if(j.gt.MAXLOC) exit

if(local(j).ge.0.or.iand(local(j),1).eq.0) cycle

k = -local(j)/2

if(globle(k).ne.MAXLOC) then

685 prtlpt = prtlpt + 2

prtlda(prtlpt-1) = globle(k)

prtlda(prtlpt) = j

if(prtlpt.gt.MAXPR-5) exit

end if

690 end do

once_more = .false.

if(j.lt.MAXLOC) once_more = .true.

prtlpt = prtlpt + 1 ! add sentinel

prtlda(prtlpt) = 0

695 call shmem_put(prrcda(1),prtlda(1),prtlpt,pe_le)

call barrier()

prtlpt = 0

prrcpt = 0

do

700 prrcpt = prrcpt + 2

if(prrcpt.gt.MAXPR) STOP 8 !CANTHAPPEN

if(prrcda(prrcpt-1).eq.0) exit

nrlab = prrcda(prrcpt-1)

do

705 if(local(nrlab).lt.0) exit

nrlab = local(nrlab)

50 Code

end do

k = -local(nrlab)/2

if(globri(k).eq.MAXLOC) then

710 globri(k) = prrcda(prrcpt)

end if

end do

call glob_or_logical(once_more)

if(.not. once_more) exit

715 end do

endif

endif

endif

tim_recyc = tim_recyc + irtc() - time

720

c We have calculated the local part in our strip. Now we have to

c communicate with our neighbours to find out, which clusters are

c interconnected between strips.

725 time = irtc()

c To make life easier, we reclassify our borders.

c Left border:

do j = 1, LLINE

nrlab = plane(j)

730 if(local(nrlab) .gt. 0) then

41 nrlab = local(nrlab)

if(local(nrlab) .gt. 0) goto 41

local(plane(j)) = nrlab

plane(j) = nrlab

735 endif

end do

c Reclassify right border:

do j = LPLANE-LLINE+1, LPLANE

nrlab = plane(j)

740 if(local(nrlab) .gt. 0) then

42 nrlab = local(nrlab)

if(local(nrlab) .gt. 0) goto 42

local(plane(j)) = nrlab

plane(j) = nrlab

745 endif

end do

c First we receive the right border of our left neighbour and

c store it left of our left border. We then examine it. If there

750 c is no interconnection, we are happy, if not, we have to work.

c Because PLANE() is to large to put it into a common block, we

c have to use a (counter-intuitive) trick: We store the data-to-transmit

c in border_send() and receive it in border_recv(). For transfers within

c one PE, that ist transfer from plane() to border_send(), we can use

755 c shmem_put(), because it does not conflict with local addresses.

call shmem_put(border_send(1), plane(LPLANE-LLINE+1),

* LLINE, pe_this)

call barrier()

760 call shmem_get(border_recv(1), border_send(1), LLINE, pe_le)

call barrier()

do j = 1, LLINE

if(max0(border_recv(j), plane(j)) .ne. MAXLOC) then

c There is an interconnection.

51

765 nrlab = plane(j)

if(local(nrlab) .gt. 0) then

53 nrlab = local(nrlab)

if(local(nrlab) .gt. 0) goto 53

local(plane(j)) = nrlab

770 plane(j) = nrlab

end if

nrlab = local(nrlab)

if(iand(nrlab, 1) .eq. 0) then

c Our label is a local label and has to be transferred to a

775 c global label.

c First find a free global label.

51 glolab = glomin

glomin = glomin + 1

if(glomin .ge. MAXGLO) stop 4

780 if(global(glolab).ne.0) goto 51

c "glolab" is our new free global label.

global(glolab) = nrlab - 1

globle(glolab) = border_recv(j)

globri(glolab) = MAXLOC

785 local(plane(j)) = -(2 * glolab + 1)

else

c Our label is a global label, so we have to generate

c pairing information for our left neighbour.

c If the labels in border_recv(j) and in globle(-nrlab/2) are

790 c different, we have to tell our left neigbour to join them, and

c store only the smaller one. If they are the same, we don’t have

c to do anything.

gone = border_recv(j)

gtwo = globle(-nrlab/2)

795 if(gone .ne. gtwo) then

gleft = min0(gone, gtwo)

gone = max0(gone, gtwo)

if(gone .ne. MAXLOC) then

globle(-nrlab/2) = gleft

800 prtlpt = prtlpt + 2

if(prtlpt .ge. MAXPR) stop 2

prtlda(prtlpt-1) = gleft

prtlda(prtlpt) = gone

endif

805 endif

endif

endif

end do

810 c Left border:

do j = 1, LLINE

nrlab = plane(j)

if(local(nrlab) .gt. 0) then

43 nrlab = local(nrlab)

815 if(local(nrlab) .gt. 0) goto 43

local(plane(j)) = nrlab

plane(j) = nrlab

endif

end do

820 c Reclassify right border:

do j = LPLANE-LLINE+1, LPLANE

nrlab = plane(j)

52 Code

if(local(nrlab) .gt. 0) then

44 nrlab = local(nrlab)

825 if(local(nrlab) .gt. 0) goto 44

local(plane(j)) = nrlab

plane(j) = nrlab

endif

end do

830 c Next we receive the left border of our right neighbour and store

c it right of our right border.

call shmem_put(border_send(1), plane(1), LLINE, pe_this)

call barrier()

call shmem_get(border_recv(1), border_send(1), LLINE, pe_ri)

835 call barrier()

do j = 1, LLINE

if(max0(border_recv(j), plane(j+LPLANE-LLINE))

* .ne. MAXLOC) then

nrlab = plane(j+LPLANE-LLINE)

840 if(local(nrlab) .gt. 0) then

54 nrlab = local(nrlab)

if(local(nrlab) .gt. 0) goto 54

local(plane(j+LPLANE-LLINE)) = nrlab

plane(j+LPLANE-LLINE) = nrlab

845 end if

nrlab = local(nrlab)

if(iand(nrlab, 1) .eq. 0) then

52 glolab = glomin

glomin = glomin + 1

850 if(glomin .ge. MAXGLO) stop 4

if(global(glolab) .ne. 0) goto 52

global(glolab) = nrlab - 1

globri(glolab) = border_recv(j)

globle(glolab) = MAXLOC

855 local(plane(j+LPLANE-LLINE)) = -(2 * glolab + 1)

else

gone = globri(-nrlab/2)

gtwo = border_recv(j)

if(gone .ne. gtwo) then

860 gright = min0(gone, gtwo)

gone = max0(gone, gtwo)

if(gone .ne. MAXLOC) then

globri(-nrlab/2) = gright

prtrpt = prtrpt + 2

865 if(prtrpt .ge. MAXPR) stop 2

prtrda(prtrpt-1) = gright

prtrda(prtrpt) = gone

endif

endif

870 endif

endif

end do

tim_nbex = tim_nbex + irtc() - time

875

c Now we have to exchange the pairing information and actually do

c the pairing. It is important to remember that during this pairing,

c new pairing information can come up (i. e., two non-local clusters

c with different left neighbours are being paired, so we have to inform

880 c our left neighbour strip that also these two clusters have to be

53

c paired. We could do this using a relaxation process: we repeat

c the pairing process until there are no more pairing information to

c transmit in any of the nodes, so the relaxation is at end.

c Luckily, we do not have to do such an expensive process: because after

885 c each local percolation step pairing is done, we just do the next

c relaxation step after the next local step. Only after all local steps

c are over, which means the whole system has been examined, we have to

c do the expensive relaxation until there are no more changes detected.

890 c First we transmit pairing information to our left neighbour.

c Add a sentinel at the end of the pairing list; we do not transmit

c the number of elements in the pairing list, the sentinel denotes

c the end.

895 time = irtc()

prtlpt = prtlpt + 1

if(prtlpt .ge. MAXPR) stop 2

prtlda(prtlpt) = 0

900

call barrier()

call shmem_put(prrcda(1), prtlda(1), prtlpt, pe_le)

call barrier()

prtlpt = 0

905

c Now walk through the list of pairing information.

prrcpt = 0

60 continue

prrcpt = prrcpt + 2

910 if(prrcpt .ge. MAXPR) stop 2 ! CANTHAPPEN

none = prrcda(prrcpt-1)

ntwo = prrcda(prrcpt)

c When we reach the sentinel, we leave the loop.

if(none .eq. 0) goto 69

915 c Reclassify the labels.

if(local(none) .gt. 0) then

nold = none

61 none = local(none)

if(local(none) .gt. 0) goto 61

920 local(nold) = none

endif

if(local(ntwo) .gt. 0) then

nold = ntwo

62 ntwo = local(ntwo)

925 if(local(ntwo) .gt. 0) goto 62

local(nold) = ntwo

endif

c At this point, we already know that both labels are global, otherwise

c they would not have been put into the pairing list. But it can happen

930 c that both labels belong to the same cluster after reclassification.

if(none .ne. ntwo) then

c Redirect "ntwo" to "none". Count number of sites. Generate pairing

c info, but only for the LEFT neighbour, as we received the note for

c pairing these labels from the right.

935 gone = globle(-local(none)/2)

gtwo = globle(-local(ntwo)/2)

if(gone .ne. gtwo) then

gleft = min0(gone, gtwo)

54 Code

gone = max0(gone, gtwo)

940 globle(-local(none)/2) = gleft

if(gone .ne. MAXLOC) then

prtlpt = prtlpt + 2

if(prtlpt .ge. MAXPR) stop 2 !CANTHAPPEN

prtlda(prtlpt-1) = gleft

945 prtlda(prtlpt) = gone

endif

endif

ici = global(-local(none)/2)/2

ici = ici + global(-local(ntwo)/2)/2

950 global(-local(none)/2) = 2 * ici - 1

local(ntwo) = none

endif

goto 60

69 continue

955

c Next transmit pairing information to our right neighbour.

c For detailed comments on the process, see above.

c Add sentinel.

960 prtrpt = prtrpt + 1

if(prtrpt .ge. MAXPR) stop 2

prtrda(prtrpt) = 0

c Transmit.

965 call barrier()

call shmem_put(prrcda(1), prtrda(1), prtrpt, pe_ri)

call barrier()

prtrpt = 0

970 c Walk through pairing information.

prrcpt = 0

70 continue

prrcpt = prrcpt + 2

if(prrcpt .ge. MAXPR) stop 2 !CANTHAPPEN

975 none = prrcda(prrcpt-1)

ntwo = prrcda(prrcpt)

c Quit on sentinel reached.

if(none .eq. 0) goto 79

c Reclassify labels.

980 if(local(none) .gt. 0) then

nold = none

71 none = local(none)

if(local(none) .gt. 0) goto 71

local(nold) = none

985 endif

if(local(ntwo) .gt. 0) then

nold = ntwo

72 ntwo = local(ntwo)

if(local(ntwo) .gt. 0) goto 72

990 local(nold) = ntwo

endif

c Join them if they are not the same.

if(none .ne. ntwo) then

995 c Redirect and count; generate pairing info only for RIGHT neighbour.

gone = globri(-local(none)/2)

55

gtwo = globri(-local(ntwo)/2)

if(gone .ne. gtwo) then

gright = min0(gone, gtwo)

1000 gone = max0(gone, gtwo)

globri(-local(none)/2) = gright

if(gone .ne. MAXLOC) then

prtrpt = prtrpt + 2

if(prtrpt .ge. MAXPR) stop 2 !CANTHAPPEN

1005 prtrda(prtrpt-1) = gright

prtrda(prtrpt) = gone

endif

endif

ici = global(-local(none)/2)/2

1010 ici = ici + global(-local(ntwo)/2)/2

global(-local(none)/2) = 2 * ici - 1

local(ntwo) = none

endif

goto 70

1015 79 continue

tim_prex = tim_prex + irtc() - time

20 continue

1020

tim_perc = irtc() - tim_perc

c Now the global percolation process has ended. We just have two more

c tasks to do: full relaxation of all pairing information and accounting

1025 c for clusters and connectivity.

c Full relaxation of paring information consists of the following

c processes: nearest neighbour interaction (transmit pairing info

c to left and right and walk through received pairing info); tell the

1030 c master node if there has been any pairing info transmitted; the master

c node decides if there were transmissions and thus more relaxation has

c to be done; the master node tells all slaves if they have to repeat

c the process or not; repeat everything until fixpoint reached.

1035 tim_fullrelax = irtc()

call full_relax()

tim_fullrelax = irtc() - tim_fullrelax

1040 c Now we also have done the full relaxation. After this hell of work,

c we can now get to the results: we will do the final accounting.

c But on parallel computers, even this is a difficult task.

tim_loccount = irtc()

1045

c First we count the local clusters. During this process, we throw away

c everything we have counted. Of course, we must not throw away nonroot

c labels that are connected to a nonlocal cluster.

do 220 i = 1, MAXLOC

1050 nrlab = i

if(local(nrlab) .gt. 0) then

221 nrlab = local(nrlab)

if(local(nrlab) .gt. 0) goto 221

endif

56 Code

1055 nrlab = local(nrlab)

if(nrlab .eq. 0) goto 220

if(iand(nrlab, 1) .eq. 0) then

c It is local, we can take it into account.

if(local(i) .lt. 0) then

1060 numroo = numroo + 1

numsit = numsit - local(i)/2

fli = -local(i)/2

ibin = dlog(fli)*rcplog+0.00001d0

if(ibin .le. MAXBIN) ns(ibin) = ns(ibin) + 1

1065 chi = chi + fli*fli

endif

local(i) = 0

endif

220 continue

1070 tim_loccount = irtc() - tim_loccount

c In order to be able to put also global clusters into bins, we have to

c concentrate the number of sites in that cluster, which means that one

c processor can report the number of all sites in that global cluster.

1075

tim_concen = irtc()

do 300 istep = 1, 2*NSTRIP

i = 1

301 continue

1080 c We remember the necessity of transmitting one more round in this

c step by setting nonloc to true.

nonloc = .false.

prtlpt = 0

c All labels are either global root-labels or non-root-labels pointing

1085 c to global root-labels. We just transmit the site-numbers of the

c root-labels to the left neighbour (if there is one).

if(i .ge. MAXLOC) goto 303

302 continue

nrlab = local(i)

1090 i = i + 1

if(nrlab .lt. 0) then

c Is a root-label.

nleft = globle(-nrlab/2)

if(nleft .ne. MAXLOC) then

1095 c Has a left neighbour.

nonloc = .true.

prtlpt = prtlpt + 2

if(prtlpt .ge. MAXPR) stop 2 !CANTHAPPEN

prtlda(prtlpt-1) = nleft

1100 prtlda(prtlpt) = global(-nrlab/2)

global(-nrlab/2) = 0

endif

endif

if((prtlpt .gt. MAXPR-5) .or.

1105 * (i .ge. MAXLOC)) goto 303

goto 302

c Now transmit the information.

303 continue

prtlpt = prtlpt + 1

1110 if(prtlpt .ge. MAXPR) stop 2 !CANTHAPPEN

c Add sentinel.

prtlda(prtlpt) = 0

57

call barrier()

call shmem_get(prrcda(1), prtlda(1), MAXPR, pe_ri)

1115 call barrier()

prtlpt = 0

prrcpt = 0

c Put the received info into our data.

304 continue

1120 prrcpt = prrcpt + 2

if(prrcpt .ge. MAXPR) stop 2 !CANTHAPPEN

nrlab = prrcda(prrcpt-1)

if(nrlab .eq. 0) goto 306

if(local(nrlab) .gt. 0) then

1125 305 nrlab = local(nrlab)

if(local(nrlab) .gt. 0) goto 305

endif

nrlab = local(nrlab)

global(-nrlab/2) = global(-nrlab/2)

1130 * + (prrcda(prrcpt)/2)*2

goto 304

306 continue

if(i.ge.MAXLOC) nonloc = .false.

1135 call glob_or_logical(nonloc)

if(nonloc) goto 301

300 continue

tim_concen = irtc() - tim_concen

1140 tim_globcount = irtc()

numofinf=0

c Now we have to put the labels into the bins.

conn = .false.

do 310 i = 1, MAXLOC

1145 nrlab = local(i)

if(nrlab .eq. 0) goto 310

if(nrlab .gt. 0) then

c All non-root-labels that are still present, are connected to

c a global cluster, otherwise they would have been discarded

1150 c after the local counting.

nonroo = nonroo + 1

else

numglo = numglo + 1

nsize = global(-nrlab/2)

1155 numsit = numsit - nsize/2

c Count this global cluster only if it is concentrated; do not

c count part of a horizontically percolating cluster.

if((-nsize/2.gt.0).and.(globle(-nrlab/2).eq.MAXLOC)) then

numgloclu = numgloclu + 1

1160 fli = -nsize/2

ibin = dlog(fli)*rcplog+0.0001d0

if(ibin .le. MAXBIN) ns(ibin) = ns(ibin) + 1

chi = chi + fli*fli

c print *, pe_this, ’global’, i, -nsize/2

1165 else

if(nsize/2.ne.0) then

conn = .true.

ninfclu = ninfclu - nsize/2

numofinf = numofinf + 1

1170 endif

58 Code

endif

endif

310 continue

call glob_or_logical(conn)

1175

c We have to sum up all the bins. And all the other interesting data.

do j = 0, MAXBIN

call glob_sum_integer(ns(j))

end do

1180

call glob_sum_integer(numofinf)

call glob_sum_integer(nocc)

call glob_sum_integer(ninfclu)

call glob_sum_integer(nonroo)

1185 call glob_sum_integer(numroo)

call glob_max_integer(numglo)

call glob_sum_integer(numgloclu)

call glob_sum_integer(numsit)

call glob_sum_real(chi)

1190 tim_globcount = irtc() - tim_globcount

tim_label1 = irtc()

c Now we have to take care of the horizontically percolating cluster.

1195 fli = ninfclu

if(fli.gt.0) then

ibin = dlog(fli)*rcplog+0.0001d0

if(ibin .le. MAXBIN) ns(ibin) = ns(ibin) + 1

1200 endif

tim_label1 = irtc() - tim_label1

tim_glob = irtc() - tim_glob

1205

call glob_sum_integer(tim_loc)

call glob_sum_integer(tim_prex)

call glob_sum_integer(tim_nbex)

1210 call glob_sum_integer(tim_perc)

call glob_sum_integer(tim_fullrelax)

call glob_sum_integer(tim_detconn)

call glob_sum_integer(tim_loccount)

call glob_sum_integer(tim_concen)

1215 call glob_sum_integer(tim_globcount)

call glob_sum_integer(tim_label1)

call glob_sum_integer(tim_glob)

call glob_sum_integer(tim_recyc)

c Do the output. All times in milliseconds.

1220 call barrier()

if(pe_this .eq. 0) then

print *, ’# Using Kirkpatrick-Stoll PRNG’

if(ALLOW_GLOBAL_RECYC) then

print *, ’# Global recycling on’

1225 end if

print *, ’# Local time: ’, tim_loc*1.333d-8*1000

print *, ’# Nb. exch. time: ’, tim_nbex*1.333d-5

print *, ’# Pr. exch. time: ’, tim_prex*1.333d-5

59

print *, ’# Recycling time: ’, tim_recyc*1.333d-5

1230 print *, ’# Pure percolation time: ’, tim_perc*1.333d-5

print *, ’# Full relaxation time: ’, tim_fullrelax*1.333d-5

print *, ’# Local counting time: ’, tim_loccount*1.333d-5

print *, ’# Concentration time: ’, tim_concen*1.333d-5

print *, ’# Global counting time: ’, tim_globcount*1.333d-5

1235 print *, ’# Glob.-perc. time: ’, (tim_glob-tim_perc)*1.333d-5

print *, ’# Global total time: ’, tim_glob*1.333d-5

print *, ’# Size of system: ’, L, ’ ** ’, IDIM

print *, ’# Number of strips: ’, NSTRIP

print *, ’# Initial random seed: ’, ISEED

1240 print *, ’# Probability: ’, P

print *, ’# Integer Probabilty: ’, IP

print *, ’# Number of occupied sites: ’, numsit + ninfclu

print *, ’# nocc: ’, nocc

print *, ’# Local rootlabels: ’, numroo

1245 print *, ’# Global clusters: ’, numgloclu

print *, ’# Total number of clusters: ’, numroo+numgloclu

print *, ’# Number density: ’, (1.0*(numroo+numgloclu)/NSYS)

print *, ’# Max. of global roots: ’, numglo

print *, ’# Nonroots pointing to Globals: ’, nonroo

1250 print *, ’# MAXLOC = ’, MAXLOC

print *, ’# LIMIT = ’, DIVLIMMAX, ’ * MAXLOC’

print *, ’# Number of garbage collections: ’, nrecyc

if(conn) then

print *, ’# Size of infinite cluster: ’, ninfclu

1255 else

print *, ’# No infinite cluster’

endif

print *, ’# Number of infinite cluster labels’, numofinf

print *, ’# Second moment: ’, chi/NSYS

1260

do ibin = 0, MAXBIN

if(ns(ibin) .ne. 0) print *, 2**ibin, ns(ibin)

enddo

endif

1265

contains

subroutine prep_rec_glo()

logical once_more

1270 integer nrbegin, nrend, nrlab, k

! to left:

nrbegin = 1

do

nrend = nrbegin - 1

1275 prtlpt = 0

once_more = .false.

do

nrend = nrend + 1

if((global(nrend).ne.0)

1280 * .and.(globle(nrend).ne.MAXLOC)) then

prtlpt = prtlpt + 1

prtlda(prtlpt) = globle(nrend)

end if

if((prtlpt.ge.MAXPR-5).or.(nrend.ge.MAXGLO)) exit

1285 end do

if(prtlpt.gt.1) once_more = .true.

60 Code

prtlpt = prtlpt + 1

prtlda(prtlpt) = 0

call barrier()

1290 call shmem_put(prrcda(1), prtlda(1), prtlpt, pe_le)

call barrier()

prrcpt = 0

prtlpt = 0

do

1295 prrcpt = prrcpt + 1

nrlab = prrcda(prrcpt)

if(nrlab .eq. 0) exit

do

if(local(nrlab).le.0) exit

1300 nrlab = local(nrlab)

end do

prrcda(prrcpt) = nrlab

end do

call barrier()

1305 call shmem_put(prtlda(1), prrcda(1), prrcpt, pe_ri)

call barrier()

! in prtlda is now the reclassified info. We have to put it back

! to globle()

nrend = nrbegin - 1

1310 prtlpt = 0

do

nrend = nrend + 1

if((global(nrend).ne.0)

* .and.(globle(nrend).ne.MAXLOC)) then

1315 prtlpt = prtlpt + 1

globle(nrend) = prtlda(prtlpt)

end if

if(prtlda(prtlpt+1).eq.0) exit

end do

1320 nrbegin = nrend

call glob_or_logical(once_more)

if(.not. once_more) exit

end do

! to right:

1325 nrbegin = 1

do

nrend = nrbegin - 1

prtrpt = 0

once_more = .false.

1330 do

nrend = nrend + 1

if((global(nrend).ne.0)

* .and.(globri(nrend).ne.MAXLOC)) then

prtrpt = prtrpt + 1

1335 prtrda(prtrpt) = globri(nrend)

end if

if((prtrpt.ge.MAXPR-5).or.(nrend.ge.MAXGLO)) exit

end do

if(prtrpt.gt.1) once_more = .true.

1340 prtrpt = prtrpt + 1

prtrda(prtrpt) = 0

call barrier()

call shmem_put(prrcda(1), prtrda(1), prtrpt, pe_ri)

call barrier()

61

1345 prrcpt = 0

prtrpt = 0

do

prrcpt = prrcpt + 1

nrlab = prrcda(prrcpt)

1350 if(nrlab .eq. 0) exit

do

if(local(nrlab).le.0) exit

nrlab = local(nrlab)

end do

1355 prrcda(prrcpt) = nrlab

end do

call barrier()

call shmem_put(prtrda(1), prrcda(1), prrcpt, pe_le)

call barrier()

1360 ! in prtrda is now the reclassified info. We have to put it back

! to globri()

nrend = nrbegin - 1

prtrpt = 0

do

1365 nrend = nrend + 1

if((global(nrend).ne.0)

* .and.(globri(nrend).ne.MAXLOC)) then

prtrpt = prtrpt + 1

globri(nrend) = prtrda(prtrpt)

1370 end if

if(prtrda(prtrpt+1).eq.0) exit

end do

nrbegin = nrend

call glob_or_logical(once_more)

1375 if(.not. once_more) exit

end do

prtlpt = 0

prtrpt = 0

end subroutine

1380

subroutine klass(nrlab)

integer nrlab, nold

if(local(nrlab) .gt. 0) then

nold = nrlab

1385 do

nrlab = local(nrlab)

if(local(nrlab) .le. 0) exit

end do

local(nold) = nrlab

1390 end if

end subroutine

subroutine reclass_plane()

integer k, nold, nrlab

1395 do k = 1, LPLANE

nrlab = plane(k)

if(local(nrlab).gt.0) then

nold = nrlab

do

1400 nrlab = local(nrlab)

if(local(nrlab).le.0) exit

end do

62 Code

local(nold) = nrlab

plane(k) = nrlab

1405 end if

end do

end subroutine

subroutine full_relax()

1410 logical once_more

do

once_more = .false.

! to left:

if(prtlpt .ne. 0) once_more = .true.

1415 prtlpt = prtlpt + 1 ! add sentinel

if(prtlpt .ge. MAXPR) stop 2

prtlda(prtlpt) = 0

call barrier()

call shmem_put(prrcda(1), prtlda(1), prtlpt, pe_le)

1420 call barrier()

prtlpt = 0

prrcpt = 0

do

prrcpt = prrcpt + 2

1425 !if(prrcpt .ge. MAXPR) stop 2 ! CANTHAPPEN

none = prrcda(prrcpt-1)

ntwo = prrcda(prrcpt)

if(none .eq. 0) exit ! reached sentinel

call pair_to_left(none, ntwo)

1430 end do

! to right:

if(prtrpt .ne. 0) once_more = .true.

prtrpt = prtrpt + 1 ! add sentinel

if(prtrpt .ge. MAXPR) stop 2

1435 prtrda(prtrpt) = 0

call barrier()

call shmem_put(prrcda(1), prtrda(1), prtrpt, pe_ri)

call barrier()

prtrpt = 0

1440 prrcpt = 0

do

prrcpt = prrcpt + 2

!if(prrcpt .ge. MAXPR) stop 2 ! CANTHAPPEN

none = prrcda(prrcpt-1)

1445 ntwo = prrcda(prrcpt)

if(none .eq. 0) exit ! reached sentinel

call pair_to_right(none, ntwo)

end do

! one more time?

1450 call glob_or_logical(once_more)

if(.not. once_more) exit

end do

end subroutine

1455 subroutine pair_to_left(none, ntwo)

integer none, ntwo, gone, gtwo, gleft

call klass(none)

call klass(ntwo)

if(none .ne. ntwo) then

1460 gone = globle(-local(none)/2)

63

gtwo = globle(-local(ntwo)/2)

if(gone .ne. gtwo) then

gleft = min0(gone, gtwo)

gone = max0(gone, gtwo)

1465 globle(-local(none)/2) = gleft

if(gone .ne. MAXLOC) then

prtlpt = prtlpt + 2

if(prtlpt .ge. MAXPR) stop 2 ! can it happen?

prtlda(prtlpt-1) = gleft

1470 prtlda(prtlpt) = gone

end if

end if

global(-local(none)/2) = 2 * (global(-local(none)/2)/2

* + global(-local(ntwo)/2)/2) - 1

1475 local(ntwo) = none

end if

end subroutine

subroutine pair_to_right(none, ntwo)

1480 integer none, ntwo, gone, gtwo, gright

call klass(none)

call klass(ntwo)

if(none .ne. ntwo) then

gone = globri(-local(none)/2)

1485 gtwo = globri(-local(ntwo)/2)

if(gone .ne. gtwo) then

gright = min0(gone, gtwo)

gone = max0(gone, gtwo)

globri(-local(none)/2) = gright

1490 if(gone .ne. MAXLOC) then

prtrpt = prtrpt + 2

if(prtrpt .ge. MAXPR) stop 2 ! can it happen?

prtrda(prtrpt-1) = gright

prtrda(prtrpt) = gone

1495 end if

end if

global(-local(none)/2) = 2 * (global(-local(none)/2)/2

* + global(-local(ntwo)/2)/2) - 1

local(ntwo) = none

1500 end if

end subroutine

c The following subroutine synchronises a logical variable over

c all pe’s. That means, it takes the value of the variable on all

1505 c pe’s, does a logical or on these values and distributes the

c result back to the variables. The variable does not need to be

c in a common-block, as the special variable comm_logvar is used

c for data-transfer.

subroutine glob_or_logical(logvar)

1510 logical logvar

integer k

comm_logvar = logvar

call barrier()

if(pe_this.eq.0) then

1515 do k = 1, NSTRIP-1

call shmem_logical_get(comm_logvar, comm_logvar, 1, k)

logvar = logvar .or. comm_logvar

end do

64 Code

comm_logvar = logvar

1520 do k = 1, NSTRIP-1

call shmem_logical_put(comm_logvar, comm_logvar, 1, k)

end do

end if

call barrier()

1525 logvar = comm_logvar

end subroutine

c Do a global sum of integers and redistribute the result back to

c the variables.

1530 subroutine glob_sum_integer(intvar)

integer intvar, k

comm_intvar = intvar

call barrier()

if(pe_this.eq.0) then

1535 do k = 1, NSTRIP-1

call shmem_integer_get(comm_intvar, comm_intvar, 1, k)

intvar = intvar + comm_intvar

end do

comm_intvar = intvar

1540 do k = 1, NSTRIP-1

call shmem_integer_put(comm_intvar, comm_intvar, 1, k)

end do

end if

call barrier()

1545 intvar = comm_intvar

end subroutine

c Find the minimum integer.

subroutine glob_min_integer(intvar)

1550 integer intvar, k

comm_intvar = intvar

call barrier()

if(pe_this .eq. 0) then

do k = 1, NSTRIP - 1

1555 call shmem_integer_get(comm_intvar, comm_intvar, 1, k)

intvar = min0(intvar, comm_intvar)

end do

comm_intvar = intvar

do k = 1, NSTRIP - 1

1560 call shmem_integer_put(comm_intvar, comm_intvar, 1, k)

end do

end if

call barrier()

intvar = comm_intvar

1565 end subroutine

c Find the maximum integer.

subroutine glob_max_integer(intvar)

integer intvar

1570 intvar = -intvar

call glob_min_integer(intvar)

intvar = -intvar

end subroutine

1575 c Do a global sum of reals and redistribute the result back to

c the variables.

65

subroutine glob_sum_real(realvar)

real realvar

integer k

1580 comm_realvar = realvar

call barrier()

if(pe_this.eq.0) then

do k = 1, NSTRIP-1

call shmem_real_get(comm_realvar, comm_realvar, 1, k)

1585 realvar = realvar + comm_realvar

end do

comm_realvar = realvar

do k = 1, NSTRIP-1

call shmem_real_put(comm_realvar, comm_realvar, 1, k)

1590 end do

end if

call barrier()

realvar = comm_realvar

end subroutine

1595

subroutine ks_warmup()

integer i, ii, ibm

integer ici, one

integer k, up

1600 one = 1

ibm = 2 * (ISEED + pe_this) - 1

do i = 0, 255

ici = 0

do ii = 1, 64

1605 ici = ishft(ici, 1)

ibm = ibm * 16807

if(ibm .lt. 0) ici = ior(ici, one)

end do

ks_rnd(i) = ici

1610 end do

ks_idx = 0

do i = 1, 8*256

ks_idx = iand(ks_idx + 1, 255)

ks_rnd(ks_idx) = ieor(ks_rnd(iand(ks_idx-103, 255)),

1615 * ks_rnd(iand(ks_idx-250, 255)))

end do

end subroutine

end

C.2 Sequential program with averaging

I used the program below on sequential computers mainly to study finite-size effects
and statistical fluctuations. It also served as a test for the parallel program. Of
course, it is not possible to simulate huge lattices on sequential computers.

The program supports both open boundaries and busbar, is suitable for two to
seven dimensions, and can utilize different PRNGs. It does several runs for a given
system size and averages over them.

c Random site percolation in up to seven dimensions. Counts clusters.

c Uses recycling of labels.

c Do several runs and find out not only average values, but also statistical

5 c errors.

66 Code

c label(i) negative: rootlabel with -label(i) sites in the cluster.

c label(i) positive: points to other label

c label(i) zero: free label, can be reused

10 c2345 7

parameter (ISEED=1, L=301, IDIM=4, NSYS=L**IDIM,

* LPLANE=L**(IDIM-1), MAX=100e6,

* P=0.196889, MAXBIN=45, MBP1=MAXBIN+1,

* LIMIT=0.95*MAX,

15 * NREPEAT=50)

dimension plane(LPLANE), label(MAX), ns(0:MAXBIN)

data ns/MBP1*0/

integer plane

logical conn, left, top, three, four, five, six, seven

20 real*8 fli, chi

integer*4 IP, ks(0:16383), idx

integer*8 sum

real*8 ftemp, fsum

real*8 fbin1(0:MAXBIN), fbin2(0:MAXBIN)

25 real*8 fnc1, fnc2, fchi1, fchi2, flargest1, flargest2

real*4 etime, tstart(2), tstop(2)

c First of all, we will say that the program has started and what

c parameters we are using.

30 print *, ’# Koelle Alaaf!’

print *, ’# Size of system: ’, L, ’ ** ’, IDIM

print *, ’# Using Ziff PRNG’

print *, ’# Boundaries: open’

print *, ’# Initial random seed: ’, ISEED

35 print *, ’# Probability: ’, P

print *, ’# Number of independent runs: ’, NREPEAT

dummy = etime(tstart)

40 call ks_warmup()

IP=(2.0d0*P-1.0d0)*2147483648.0d0

rcplog=1.0d0/dlog(2.0d0)

do i = 0, MAXBIN

45 fbin1(i) = 0.0d0

fbin2(i) = 0.0d0

end do

fnc1 = 0.0d0

fnc2 = 0.0d0

50 fchi1 = 0.0d0

fchi2 = 0.0d0

flargest1 = 0.0d0

flargest2 = 0.0d0

55 do irepeat = 1, NREPEAT

conn=.true.

nrecyc=0

numsit=0

numroo=0

60 maxclu=0

chi=0.0d0

left =.false.

top =.false.

67

three=.false.

65 four =.false.

five =.false.

six =.false.

seven=.false.

70 do i = 0, MAXBIN

ns(i) = 0

end do

c In the beginning, all labels are (re-)usable.

75 do 10 i = 1, MAX

10 label(i) = 0

nrmin = 2

! Open b.c . instead of busbar

80 c To determine connectivity, we use the easiest method: The zeroth

c plane is set to be completely the cluster with number 1, which

c means that if in the end there appears a cluster 1 in the last plane,

c we have connectivity and cluster 1 is the infinite cluster.

c Of course, this influences statistics, but it makes our life easier.

85 c But this also means, that label 1 must never be recycled. We achieve

c this by keeping nrmin always larger than one.

do 11 i=1, LPLANE

11 plane(i)=MAX

!label(1)=-1

90

i = 1

im1 = L**(IDIM-1)

if(IDIM.eq.2) goto 15

im2 = im1-L**(IDIM-2)

95 if(IDIM.eq.3) goto 15

im3 = im2-L**(IDIM-3)

if(IDIM.eq.4) goto 15

im4 = im3-L**(IDIM-4)

if(IDIM.eq.5) goto 15

100 im5 = im4-L**(IDIM-5)

if(IDIM.eq.6) goto 15

im6 = im5-L**(IDIM-6)

15 continue

105 do 20 istep=1, NSYS

idx = iand(idx + 1, 16383)

ks(idx) = ieor(ieor(ks(iand(idx-471, 16383)),

* ks(iand(idx-1586, 16383))),

* ieor(ks(iand(idx-6988, 16383)),

110 * ks(iand(idx-9689, 16383))))

if(ks(idx).lt.IP) then

c The site in investigation is occupied.

top =(plane(i).lt.MAX)

left =(plane(im1).lt.MAX)

115 if(IDIM.eq.2) goto 17

three=(plane(im2).lt.MAX)

if(IDIM.eq.3) goto 17

four =(plane(im3).lt.MAX)

if(IDIM.eq.4) goto 17

120 five =(plane(im4).lt.MAX)

if(IDIM.eq.5) goto 17

68 Code

six =(plane(im5).lt.MAX)

if(IDIM.eq.6) goto 17

seven=(plane(im6).lt.MAX)

125 17 continue

if(.not.(left.or.top.or.three.or.four

* .or.five.or.six.or.seven)) then

c Alle neighbours are free, so a new cluster starts.

c Fist we have to find a new free label.

130 30 nrlab = nrmin

nrmin = nrmin + 1

if(nrmin.eq.MAX) stop 1

if(label(nrlab).ne.0) goto 30

plane(i)=nrlab

135 label(nrlab)=-1

else

c At least one of the neighbours is occupied, which means work.

c First we determine the rootlabels for all neighbours.

nleft =MAX

140 ntop =MAX

nthree=MAX

nfour =MAX

nfive =MAX

nsix =MAX

145 nseven=MAX

c The label of the left neihgbour (if occupied) is certainly a

c rootlabel.

if(left) then

nleft=plane(im1)

150 endif

c With the other heighbours, this need not be the case.

if(top) then

ntop =plane(i)

155 if(label(ntop).gt.0) then

51 ntop=label(ntop)

if(label(ntop).gt.0) goto 51

label(plane(i))=ntop

endif

160 endif

if(IDIM.eq.2) goto 31

if(three) then

nthree=plane(im2)

if(label(nthree).gt.0) then

165 52 nthree=label(nthree)

if(label(nthree).gt.0) goto 52

label(plane(im2))=nthree

endif

endif

170 if(IDIM.eq.3) goto 31

if(four) then

nfour=plane(im3)

if(label(nfour).gt.0) then

53 nfour=label(nfour)

175 if(label(nfour).gt.0) goto 53

label(plane(im3))=nfour

endif

endif

if(IDIM.eq.4) goto 31

69

180 if(five) then

nfive=plane(im4)

if(label(nfive).gt.0) then

54 nfive=label(nfive)

if(label(nfive).gt.0) goto 54

185 label(plane(im4))=nfive

endif

endif

if(IDIM.eq.5) goto 31

if(six) then

190 nsix=plane(im5)

if(label(nsix).gt.0) then

55 nsix=label(nsix)

if(label(nsix).gt.0) goto 55

label(plane(im5))=nsix

195 endif

endif

if(IDIM.eq.6) goto 31

if(seven) then

nseven=plane(im6)

200 if(label(nseven).gt.0) then

56 nseven=label(nseven)

if(label(nseven).gt.0) goto 56

label(plane(im6))=nseven

endif

205 endif

31 continue

c Now find the smallest rootlabel.

210 new=nleft

if(ntop.lt.new) new=ntop

if(IDIM.eq.2) goto 33

if(nthree.lt.new) new=nthree

if(IDIM.eq.3) goto 33

215 if(nfour.lt.new) new=nfour

if(IDIM.eq.4) goto 33

if(nfive.lt.new) new=nfive

if(IDIM.eq.5) goto 33

if(nsix.lt.new) new=nsix

220 if(IDIM.eq.6) goto 33

if(nseven.lt.new) new=nseven

33 continue

c We count the sites within the cluster positive in ici.

225 ici=1

if(left) then

ici=ici-label(nleft)

if(nleft.ne.new) label(nleft)=new

endif

230 if(top) then

if(ntop.ne.nleft) ici=ici-label(ntop)

if(ntop.ne.new) label(ntop)=new

endif

if(IDIM.eq.2) goto 32

235 if(three) then

if(nthree.ne.nleft.and.nthree.ne.ntop)

* ici=ici-label(nthree)

70 Code

if(nthree.ne.new) label(nthree)=new

endif

240 if(IDIM.eq.3) goto 32

if(four) then

if(nfour.ne.nleft.and.nfour.ne.ntop.and.

* nfour.ne.nthree) ici=ici-label(nfour)

if(nfour.ne.new) label(nfour)=new

245 endif

if(IDIM.eq.4) goto 32

if(five) then

if(nfive.ne.nleft.and.nfive.ne.ntop.and.

* nfive.ne.nthree.and.nfive.ne.nfour)

250 * ici=ici-label(nfive)

if(nfive.ne.new) label(nfive)=new

endif

if(IDIM.eq.5) goto 32

if(six) then

255 if(nsix.ne.nleft.and.nsix.ne.ntop.and.

* nsix.ne.nthree.and.nsix.ne.nfour.and.

* nsix.ne.nfive) ici=ici-label(nsix)

if(nsix.ne.new) label(nsix)=new

endif

260 if(IDIM.eq.6) goto 32

if(seven) then

if(nseven.ne.nleft.and.nseven.ne.ntop.and.

* nseven.ne.nthree.and.nseven.ne.nfour.and.

* nseven.ne.nfive.and.nseven.ne.nsix)

265 * ici=ici-label(nseven)

if(nseven.ne.new) label(nseven)=new

endif

32 label(new)=-ici

270 plane(i)=new

endif

else

c The site in investigation is not occupied.

plane(i)=MAX

275 endif

c Now comes the Garbage Collector.

if(nrmin.ge.LIMIT) then

c Do recycling. First we reclassify all sites in plane(), which means

280 c that we give them their rootlabels.

nrecyc=nrecyc+1

do 400 j = 1, LPLANE

nrlab = plane(j)

if(label(nrlab).gt.0) then

285 401 nrlab = label(nrlab)

if(label(nrlab).gt.0) goto 401

label(plane(j)) = nrlab

plane(j) = nrlab

endif

290 400 continue

c Now we can delete safely all non-root-labels.

do 402 j = 1, MAX

402 if(label(j).gt.0) label(j) = 0

c Now we have to find out, which rootlabels are still in use.

295 c We make label(plane(j)) positive, so that alle non-marked

71

c rootlabels are negative thereafter.

do 403 j = 1, LPLANE

nrlab = plane(j)

if(label(nrlab).lt.0) label(nrlab) = -label(nrlab)

300 403 continue

c Now we can throw away all non-marked labels. Of course, we

c have to put them into the bins.

do 404 j = 1, MAX

li = label(j)

305 if(li.lt.0) then

maxclu=min0(maxclu,li)

numroo=numroo+1

numsit=numsit+li

fli=-li

310 ibin=dlog(fli)*rcplog+0.00001d0

if(ibin.le.MAXBIN) ns(ibin)=ns(ibin)+1

chi=chi+fli*fli

label(j) = 0

endif

315 404 label(j) = -label(j)

c Now everything should be fine. If there is no infinite cluster,

c label 1 is now zero, but it must not be reused.

nrmin=2

endif

320 c End of Garbage Collector.

i=i+1

if(i.gt.LPLANE) i=1

im1=im1+1

325 if(im1.gt.LPLANE) im1=1

if(IDIM.eq.2) goto 20

im2=im2+1

if(im2.gt.LPLANE) im2=1

if(IDIM.eq.3) goto 20

330 im3=im3+1

if(im3.gt.LPLANE) im3=1

if(IDIM.eq.4) goto 20

im4=im4+1

if(im4.gt.LPLANE) im4=1

335 if(IDIM.eq.5) goto 20

im5=im5+1

if(im5.gt.LPLANE) im5=1

if(IDIM.eq.6) goto 20

im6=im6+1

340 if(im6.gt.LPLANE) im6=1

20 continue

c We have examined the whole system now, so we can output all

c interesting data.

345

c To find out if there is connectivity, we have to walk through

c the bottom plane and look for references to label 1.

conn = .false.

do 110 j = 1, LPLANE

350 nrlab = plane(j)

if(label(nrlab).gt.0) then

111 nrlab = label(nrlab)

if(label(nrlab).gt.0) goto 111

72 Code

endif

355 if(nrlab.eq.1) conn = .true.

110 continue

c Statistical account of labels.

nrlab = 0

360 do 100 i=1, MAX

li=label(i)

if(li.ne.0) nrlab = nrlab + 1

if(li.ge.0) goto 100

maxclu=min0(maxclu,li)

365 numroo=numroo+1

numsit=numsit+li

fli=-li

ibin=dlog(fli)*rcplog+0.00001d0

if(ibin.le.MAXBIN) ns(ibin)=ns(ibin)+1

370 chi=chi+fli*fli

100 continue

fmax=-maxclu

chi=(chi-fmax*fmax)/NSYS

375 c Sum up ns(i), so that ns(i) = sum_{s’>s} ns’

sum = 0

do i = MAXBIN, 0, -1

sum = sum + ns(i)

ns(i) = sum

380 end do

c Now we add values to average and error values.

do i = 0, MAXBIN

ftemp = 1.0d0*ns(i)/NSYS

385 fbin1(i) = fbin1(i) + ftemp/NREPEAT

fbin2(i) = fbin2(i) + ftemp*ftemp/NREPEAT

end do

!ftemp = 1.0d0*/NSYS

!fnc1 = fnc1 + ftemp/NREPEAT

390 !fnc2 = fnc2 + ftemp*ftemp/NREPEAT

fchi1 = fchi1 + chi/NREPEAT

fchi2 = fchi2 + chi*chi/NREPEAT

ftemp = -1.0d0*maxclu/NSYS

flargest1 = flargest1 + ftemp/NREPEAT

395 flargest2 = flargest2 + ftemp*ftemp/NREPEAT

end do !irepeat

dummy = etime(tstop)

400

c Do the output.

print *, ’# Required runtime: ’, (tstop(1) - tstart(1)), ’seconds’

print *, ’# Number density: ’, fbin1(0), ’ +- ’ ,

* sqrt((fbin2(0)-fbin1(0)*fbin1(0))/(NREPEAT-1))

405 print *, ’# Size of largest cluster: ’, flargest1, ’ +- ’,

* sqrt((flargest2-flargest1*flargest1)/(NREPEAT-1))

print *, ’# Second moment: ’, fchi1, ’ +- ’,

* sqrt((fchi2-fchi1*fchi1)/(NREPEAT-1))

print *, ’’

410

do i=0, MAXBIN

73

if((fbin1(i).ne.0.0d0).and.(fbin2(i).gt.(fbin1(i)*fbin1(i))))

* print *, 2**i, fbin1(i),

* sqrt((fbin2(i)-fbin1(i)*fbin1(i))/(NREPEAT-1))

415 end do

contains

subroutine ks_warmup()

420 integer i, ii, ibm

integer ici

ibm = 2 * ISEED - 1

do i = 0, 16383

ici = 0

425 do ii = 1, 32

ici = ishft(ici, 1)

ibm = ibm * 16807

if(ibm .lt. 0) ici = ior(ici, 1)

end do

430 ks(i) = ici

end do

idx = 0

do i = 1, 8*16384

idx = iand(idx + 1, 16383)

435 ks(idx) = ieor(ieor(ks(iand(idx-471, 16383)),

* ks(iand(idx-1586, 16383))),

* ieor(ks(iand(idx-6988, 16383)),

* ks(iand(idx-9689, 16383))))

end do

440 end subroutine

end

74 Code

Appendix D

Details of pseudo-random
number generators

When doing Monte Carlo simulations, we need random numbers, but not “really”
random ones. When we change small details in our programs and want to check if
we have introduced errors in the code, we want to be able to reproduce a simulation
exactly ; in that case, we need exactly the same sequence of random numbers. To
achieve this, we do not use real random numbers, but pseudo-random numbers. An
overview over generating pseudo-random numbers in general can be found in [21].

D.1 Linear congruential generators

The simplest method of producing a sequence of pseudo-random numbers is a rule
xn = M ·xn−1 mod c. For implementation on computers, we use a c of 231 or 263, in
this case xn is just a 32-bit or 64-bit signed integer, and the integer multiplication
itself cuts off the leading bits. Choosing the right multiplier M is essential: Well
known values are 65539, 16807 = 75, or 1313 for 64-bit integers only. Of course, M
must be odd, otherwise we would receive only zeros for xn after a short time.

These generators are known to be problematic (cf. [48, part II, chapter 1]), and
in this diploma thesis, they showed wrong behaviour, too (cf. section 3.5). But they
are easy to implement and fast.

D.2 Lagged Fibonacci generators

When we use two or more pseudo-random numbers and combine them to a new one,
it should be random, too. This is the principle of LFGs. We do not combine the last
two numbers to form the next one, because this would mean to introduce strong
correlations; instead, we use large taps between the numbers that we combine.
There are several ways of combining the numbers, i. e. adding or multiplying, but
the standard method is to use the bitwise exclusive-or operation. An overview over
different LFGs (also called shift-register-sequence random-number generators) can
be found in [58].

We can produce large numbers of different LFGs by choosing different amounts
of the numbers that we combine and by different taps within the sequence for
the numbers. A well-known standard LFG is the one named after Kirkpatrcik

and Stoll (cf. [30]), despite the fact that mathematicians prefer to call it after
Tausworthe (cf. [52]). It combines two numbers and chooses them with taps 103
and 250 (xn = xn−103 ⊕ xn−250), which accounts for the third name: R(103,250).

75

76 Details of PRNGs

This generator is known to have weaknesses due to its three-point correlations, but
for the simulations done for this diploma thesis, such problems did not occur.

Generators with higher quality can be obtained using more and/or larger taps.
Two of them were used within this diploma thesis: Ziff’s four-tap R(471,1586,6988,
9689) and Ziff’s six-tap R(18,36,37,71,89,124). Both are slower than Kirkpatrick-
Stoll, and their better quality did not show up significantly in the simulations carried
out here (for other applications, this can differ drastically; cf. [58] for a list of such
applications).

One problem still remains: in order to use a LFG which largest tap is n, we first
have to produce n random numbers through other means, before we can use the
LFG-rule. We can use a LCG to determine the initial values bit by bit, but then we
have to do a relaxation on these random numbers: we produce some thousand of
them by the LFG-rule without using them, only after this warm up we start using
the random numbers.

Appendix E

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Diplomarbeit selbständig verfasst und
alle benutzten Quellen und Hilfsmittel vollständig angegeben habe.

Köln, den 10. Juni 2001

77

