
Numerical methods for the determination

of the properties and critical behaviour of

percolation and the Ising model

Inaugural-Dissertation

zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Daniel Tiggemann

aus Bad Pyrmont

Köln 2007

Berichterstatter: Prof. Dr. D. Stauffer
Prof. Dr. E. Speckenmeyer

Tag der mündlichen Prüfung: 29. November 2006

Contents

Abstract 5

Zusammenfassung 7

1 Introduction 9

1.1 Goal of this thesis . 9

1.2 What is percolation? . 10

1.3 Phenomena of percolation . 11

1.4 Computational approaches—algorithms 14

1.4.1 Exact enumeration . 14

1.4.2 Justification for Monte Carlo algorithms 14

1.4.3 Leath algorithm . 15

1.4.4 Newman-Ziff algorithm . 15

1.4.5 Hoshen-Kopelman algorithm 16

2 Fluctuations of Cluster Numbers 19

2.1 Introduction . 19

2.2 Statistical measures . 19

2.3 Simulations . 20

2.3.1 Distribution of Cluster Numbers 20

2.3.2 Variance of cluster numbers 21

2.3.3 Skewness and kurtosis of distributions 21

2.4 Summary and outlook . 23

3 Parallelizing the Hoshen-Kopelman algorithm using domain decomposition 25

3.1 Devising a parallelized version of the Hoshen-Kopelman algorithm . 25

3.1.1 Domain decomposition . 26

3.1.2 Clusters extending over several sub-domains 26

3.1.3 Recycling of redundant labels 29

3.1.4 Counting of clusters . 30

3.1.5 Fully periodic boundary conditions 30

3.1.6 Step-by-step description of the algorithm 31

3.2 Other ways of parallelizing Hoshen-Kopelman 32

3.3 Results of Monte Carlo simulations 32

3.3.1 Cluster size distribution . 33

3.3.2 Corrections to scaling . 36

3.3.3 Influence of boundary conditions on finite-size effects 38

3.3.4 Number density . 40

3.3.5 Quality of pseudo-random number generators 40

3.3.6 Speed of simulations and parallel efficiency 41

3.4 Summary and outlook . 43

3

4 Contents

4 Growing Lattices 47

4.1 Motivation . 47
4.2 Computational method . 48

4.2.1 A modified Hoshen-Kopelman algorithm 48
4.2.2 Fully periodic boundary conditions 49
4.2.3 Recycling of labels . 50

4.3 Results for three dimensions . 51
4.3.1 Cluster size distribution . 51
4.3.2 Number density . 52
4.3.3 Number of spanning clusters 52
4.3.4 Size of largest cluster . 54

4.4 Results for two dimensions . 59
4.5 Speed of simulations . 60
4.6 Summary and outlook . 61

5 Critical Behaviour of the Ising Model 63

5.1 Rationale . 63
5.2 Introduction . 63
5.3 Computational method . 64

5.3.1 Parallelization . 66
5.3.2 Multi-spin coding . 67

5.4 Simulations . 69
5.5 Results . 70
5.6 Speed of simulation and parallel efficiency 72
5.7 Summary and outlook . 72

6 Summary and Outlook 75

6.1 Summary . 75
6.2 Outlook . 76

A Acknowledgements 81

B Bibliography 83

C Typical errors in Monte Carlo data 89

D Pseudo-random number generators 91

D.1 Linear congruential generators . 91
D.2 Lagged Fibonacci generators . 91
D.3 Hashing generators . 92
D.4 Speed of different random number generators 93

E Amdahl’s law and measuring parallel efficency on real-life computers 95

F Code of programs 97

F.1 General remarks . 97
F.2 Parallelized Hoshen-Kopelman . 97
F.3 Percolation on growing lattices . 116
F.4 Ising model . 126

G Erklärung 131

Abstract

For this thesis, numerical methods have been developed, based on Monte Carlo
methods, which allow for investigating percolation and the Ising model with high
precision. Emphasis is on methods to use modern parallel computers with high
efficiency. Two basic approaches for parallelization were chosen: replication and
domain decomposition, in conjunction with suitable algorithms.

For percolation, the Hoshen-Kopelman algorithm for cluster counting was adapted
to different needs. For studying fluctuations of cluster numbers, its traditional ver-
sion (i. e. which is already published in literature) was used with simple replica-
tion. For simulating huge lattices, the Hoshen-Kopelman algorithm was adapted
to domain decomposition, by dividing the hyperplane of investigation into strips
that were assigned to different processors. By using this way of domain decom-
position, it is viable to simulate huge lattices (with world record sizes) even for
dimensions d > 2 on massively-parallel computers with distributed memory and
message passing. For studying properties of percolation in dependence of system
size, the Hoshen-Kopelman algorithm was modified to work on changing domains,
i. e. growing lattices. By using this method, it is possible to simulate a lattice of
linear size Lmax and investigate lattices of size Li < Lmax for free. Here again,
replication is a viable parallelization strategy.

For the Ising model, the standard Monte Carlo method of importance sampling
with Glauber kinetics and multi-spin coding is adapted to parallel computers by
domain decomposition of the lattice into strips. Using this parallelization method,
it is possible to use massively-parallel computers with distributed memory and mes-
sage passing in order to study huge lattices (again world record sizes) over many
Monte Carlo steps, in order to investigate the dynamical critical behaviour in two
dimensions.

The following table summarizes the most important numerical results found in
this thesis for percolation at the critical threshold. d is the dimensionality, pc is the
probability chosen for the critical threshold, taken from literature; L is the size of
the largest lattice that has been simulated with periodic boundary conditions for
this thesis; d, pc, and L are parameters. The results are τ , the Fisher exponent for
the cluster size distribution, known exactly in two dimensions, ∆1, the exponent
for the corrections to scaling for small clusters, nc, the number density (number of
clusters per lattice site), nsp, the number of spanning clusters, and D, the fractal
dimension of the largest cluster (also known exactly for d = 2).

d pc L τ ∆1 nc nsp D
2 0.5927464 7000000 187/91 0.73(2) 0.027597857(2) 0.52(1) 91/48
3 0.311608 25024 2.190(1) 0.65(5) 0.05243812(9) 0.15(3) 2.52(1)
4 0.196889 1305 2.315(2) 0.48(8) 0.0519995(2)
5 0.1407966 225 2.41(1) 0.30(10) 0.0460321(2)

Simulations for d = 3, 4, 5 are world records in simulated system size. Results
for d = 2 are for the largest published simulation. By simulating huge lattices, very
precise values for τ , ∆1, and nc could be found.

5

6 Abstract

By investigating growing lattices for d = 2 and d = 3, the fractal dimension D of
the largest cluster (which is the spanning cluster, if it forms) could be examined with
high precision. Furthermore, the number of spanning clusters nsp in dependence
on p and L has been investigated. At the critical threshold, nsp reaches a constant
value for large enough L for d = 2 and d = 3. Slightly above or below pc, nsp shows
a delicate finite-size behaviour.

For fluctuations in percolation, the distribution of cluster numbers ns for fixed
size s is Gaussian for small s and large L. The position of the maximum (i. e. 〈ns〉)
is in compliance to the power law ns ∝ s−τ . Variance of cluster numbers shows the
same behaviour as the mean cluster numbers, with deviations for small s, i. e. (〈n2

s〉−
〈ns〉2)/〈ns〉 = 1 + k2s

−∆2 , with k2 = 0.25(5) and ∆2 = 1.2(2).
For the Ising model, simulations of huge lattices (up to L = 2 · 106) for many

Monte Carlo steps showed that the dynamical critical exponent in two dimensions
is not z = 2 with logarithmic corrections, but with high probability z > 2 with
simple power-law behaviour, with the current best estimate z = 2.167(3).

This thesis has shown, like many other works in the recent years, that super-
computing is a valuable tool for physics, giving rise to the branch of computational
physics, sometimes considered to be the third branch after experimental and the-
oretical physics. Due to ever increasing computer power, problems can now be
investigated with numerical methods, which seemed to be completely inaccessible
only one or few decades ago. Although purely analytical solutions are preferable to
numerical work, it is now possible to decide questions that cannot be answered by
paper and pencil alone. The numerical methods presented in this thesis allow for
investigating percolation and the Ising model with high precision, utilizing modern
parallel computers.

Zusammenfassung

Im Rahmen dieser Arbeit wurden auf der Basis von Monte-Carlo-Verfahren nume-
rische Methoden entwickelt, die es erlauben, Perkolation und das Ising-Modell mit
hoher Präzision zu untersuchen. Dabei wurde darauf geachtet, dass diese Methoden
moderne Parallelrechner effizient nutzen. Zwei verschiedene Ansätze zur Paralle-
lisierung wurden gewählt: Replikation und Gebietszerlegung, in Verbindung mit
geeigneten bzw. modifizierten Algorithmen.

Für Perkolation wurde der Hoshen-Kopelman-Algorithmus, der zum Cluster-
Zählen dient, modifiziert. Um Fluktuationen von Cluster-Zahlen zu untersuchen,
wurde die traditionelle Version des Algorithmus (die in der Fachliteratur veröffent-
licht ist) zusammen mit einfacher Replikation benutzt. Um große Gitter zu simu-
lieren, wurde der Hoshen-Kopelman-Algorithmus angepasst auf Gebietszerlegung,
wobei die akutelle zu untersuchende Hyperebene in Streifen zerteilt wird, die ver-
schiedenen Prozessoren zugeordnet werden. Durch diese Art der Gebietszerlegung
ist es möglich, sehr große Gitter (mit Weltrekordgrößen) auf massiv-parallelen Rech-
nern mit verteiltem Speicher und Message Passing zu simulieren, selbst für Dimen-
sionen d > 2. Um Eigenschaften von Perkolation in Abhängigkeit der simulierten
Systemgröße zu untersuchen, wurde der Hoshen-Kopelman-Algorithmus angepasst
auf sich ändernde Gebiete, d. h. wachsende Gitter. Durch diese Methode ist es
möglich, Gitter der linearen Größe Lmax zu untersuchen und Resultate für beliebi-
ge Gittergrößen Li < Lmax ohne weiteren Rechenaufwand zu erhalten. Hierbei ist
Replikation wieder ein erfolgreiches Parallelisierungsverfahren.

Für das Ising-Modell wurde die Standard-Monte-Carlo-Methode des Importance
Sampling mit Glauber-Kinetik und Multi-Spin Coding angepasst auf Parallelrech-
ner mit Hilfe von Gebietszerlegung des zu simulierenden Gitters in Streifen. Mit
dieser Parallelisierungsmethode ist es möglich, massiv-parallele Rechner mit ver-
teiltem Speicher und Message Passing nutzen, um große Gitter (wiederum Weltre-
kordgrößen) über viele Monte-Carlo-Zeitschritte zu simulieren. Damit konnte das
dynamisch-kritische Verhalten des Ising-Modells in zwei Dimensionen untersucht
werden.

Die folgende Tabelle führt die wichtigsten numerischen Resultate auf, die im
Rahmen dieser Arbeit für Perkolation am kritischen Punkt gefunden wurden. d ist
die Dimensionalität, pc der Wert, der als kritische Wahrscheinlichkeit gewählt wur-
de (der Literatur entnommen); L ist die lineare Größe des größten für diese Arbeit
mit periodischen Randbedingungen simulierten Gitters; d, pc und L sind Parameter.
Die Resultate sind τ , der Fisher-Exponent der Clustergrößenverteilung (der exakte
Wert ist für d = 2 bekannt); ∆1 ist der Exponent für die Korrekturen zum Skalen-
verhalten (corrections to scaling) für kleine Cluster, nc ist die Clusterzahlendichte
(number density; die Zahl der Cluster geteilt durch die Zahl der Gitterplätze), nsp

die Zahl der systemdurchspannenden Cluster (spanning clusters), und D ist die
fraktale Dimension des größten Clusters.

7

8 Zusammenfassung

d pc L τ ∆1 nc nsp D
2 0.5927464 7000000 187/91 0.73(2) 0.027597857(2) 0.52(1) 91/48
3 0.311608 25024 2.190(1) 0.65(5) 0.05243812(9) 0.15(3) 2.52(1)
4 0.196889 1305 2.315(2) 0.48(8) 0.0519995(2)
5 0.1407966 225 2.41(1) 0.30(10) 0.0460321(2)

Die Simulationen für d = 3, 4, 5 sind Weltrekorde in der Größe des simulierten
Systems. Die Resultate für d = 2 sind für die größte publizierte Simulation. Durch
die Simulation sehr großer Gitter konnten sehr genaue Werte für τ , ∆1 und nc

gefunden werden.
Mit der Methode, Perkolation auf wachsenden Gittern zu simulieren, konnte die

fraktale Dimension D des größten Clusters (welcher auch der systemdurchspannen-
de Cluster ist, wenn er sich bildet) mit hoher Präzision untersucht werden. Ferner
wurde auch die Zahl der systemdurchspannenden Cluster nsp untersucht, in Abhän-
gigkeit von p und L. Am kritischen Punkt nimmt nsp einen konstanten Wert an für
hinreichend große L, für d = 2 und d = 3. Nahe oberhalb oder unterhalb pc zeigt
nsp ein komplexes Finite-Größe-Verhalten (finite size behaviour).

Für Fluktuationen bei Perkolation nimmt die Verteilung der Cluster-Zahlen ns

für ein festes s eine Gauß-Verteilung an für kleine s und große L. Die Position des
Maximums (d. h. 〈ns〉) folgt dem Potenzgesetz ns ∝ s−τ . Die Varianzen der Cluster-
Zahlen zeigt das gleiche Verhalten wie die Mittelwerte, mit kleinen Abweichungen
für kleine s, d. h. (〈n2

s〉 − 〈ns〉2)/〈ns〉 = 1 + k2s
−∆2, mit k2 = 0.25(5) und ∆2 =

1.2(2).
Für das Ising-Modell haben Simulationen von großen Gittern (bis zu L = 2 ·106)

über viele Monte-Carlo-Zeitschritte gezeigt, dass der dynamisch-kritische Exponent
in zwei Dimensionen nicht z = 2 mit logarithmischen Korrekturen ist, sondern mit
großer Wahrscheinlichkeit z > 2 mit einfachem Potenzgesetzverhalten, wobei die
beste Abschätzung z = 2.167(3) ist.

Diese Arbeit zeigt, wie schon viele Arbeiten der letzten Jahre, dass Supercompu-
ting ein wertvolles Werkzeug der Physik ist, und dass der Zweig der Computerphysik
(computational physics) sich als dritter Zweig der Physik nach Experimental- und
Theoretischer Physik heruszukristallisieren beginnt. Durch die ständig wachsende
Rechenleistung können nun physikalische Probleme mit numerischen Methoden un-
tersucht werden, die noch vor einem oder wenigen Jahrzehnten völlig unzugänglich
erschienen. Obwohl rein analytische Lösungen wünschenswerter sind als numerische
Arbeiten, können nun Fragen entschieden werden, die nicht mit Bleistift und Pa-
pier allein beantwortet werden können. Die numerischen Methoden, die in dieser
Arbeit präsentiert werden, erlauben es, Perkolation und das Ising-Modell mit hoher
Präzision zu untersuchen, unter Verwendung moderner Parallelrechner.

Chapter 1

Introduction

1.1 Goal of this thesis

Goal of this thesis is to develop numerical methods, i. e. algorithms, for investigating
simple models of statistical physics, namely percolation and the Ising model, while
emphasis is placed on percolation. These models are simple in comparison to more
elaborate models, which are investigated heavily in physics, but their simplicity
nonewithstanding, they offer a wealth of phenomena comparable to that encoun-
tered in other models. The development of numerical methods for percolation and
the Ising model is driven by two motivations: the methods can be used (either di-
rectly or analogously) for other models, too, and secondly, insight won into simple
models may be applicable also to complex models. For example, percolation is a
model of disordered media, which become ever more important.

Another goal is to show that numerical methods play an important role in mod-
ern theoretical physics, and allow to get new insight into problems that elude purely
analytical investigation. This growing importance is due to ever increasing com-
puter power and the invention of ever more advanced algorithms. The combination
of both make numerical investigations possible that were deemed impossible only
decades ago.

Statistical physics investigates the complicated behaviour of simple constituents,
i. e. the emergence of collective behaviour of a large number of constituents, which
differs qualitatively from the behaviour of the simple constituents.

One remarkable fact is that this collective behaviour is separable from the in-
dividual behaviour, and sometimes the same collective behaviour can be seen in
systems that differ in microscopic details. This gives rise to the idea of universality:
Some quantities that can be observed behave in a qualitatively same way. For ex-
ample, right at a phase transition, some observables diverge with power-laws, giving
rise to critical exponents. When critical exponents of two systems are the same,
they belong to the same universality class.

Using numerical methods, it is possible to obtain very precise estimates for
quantities that are of interest in many models. Using these estimates makes it
possible to test theories that were developed using analytical methods. These tests
are very important for advancing theories; sometimes the lack of precise estimates
can discourage progress, while precise values can encourage it. In this way, computer
simulations are comparable to experiments; but while simulations can never be
regarded as true nature (and thus never make experiments obsolete; ultimately,
understanding nature is the goal of all physics), by using simulations it is possible
to investigate models, parameter regions, or characteristics of systems, which are
not accessible to any conceivable real experiment.

9

10 Introduction

In this thesis, three different“modifications”of the traditional Hoshen-Kopelman
algorithm will be presented, along with results for these: simple replication in order
to study fluctuations (not really a modification, rather a different mode of usage),
parallelization using domain decomposition in order to study huge lattices, and
growing lattices (i. e. changing domains) in order to study the dependence of per-
colation observables on system size L (and in this respect, also to study finite size
effects). For the Ising model, an efficient parallelization, again using domain de-
composition, will be presented, in order to settle a long dispute over the dynamical
critical exponent z.

A unified theme for this thesis can be formulated like this: Use powerful comput-
ers and adapted algorithms to investigate simple and standard models of statistical
physics.

1.2 What is percolation?

Percolation is a problem that can be easily defined, but which is difficult to solve.
Take a square lattice of L2 sites. Each site is either occupied (with a probabil-

ity p) or free (with probability 1 − p), independent of other sites. A cluster is a
group of neighbouring occupied sites, surrounded by free sites. Percolation theory
deals with the properties of these clusters.

In the sketch below, occupied sites are marked by a bullet, clusters are marked by
a surrounding line. We have two 1-clusters, a 2-cluster, and a 3-cluster. Throughout
this thesis, the number of sites in a cluster will be denoted by s, the number of
clusters in a system that contain s sites each by ns. Thus, below we have n1 = 2,
n2 = 1, and n3 = 1.

This is called site percolation. There is also bond percolation: the bonds between
sites are occupied with probability p, and we define as clusters those sites that are
connected through occupied bonds; the sites that are connected in this way are called
wetted sites. Within this thesis, only site percolation will be investigated; bond per-
colation differs only gradually, not principally. A good introduction to percolation
theory can be found in [StAh94], a short overview in [Bund91], [SAHM99]. Some
remarks on the history of percolation theory can be found in [Grim00], [Hamm83].

Research in percolation started 1941 with Paul Flory investigating the gelation
of polymers [Flor41], although the term percolation was first coined by Broadbent
and Hammersley in 1957 [BrHa57], [Hamm57a], [Hamm57b]; Broadbent was in-
vestigating gas masks, which sheds a first light on the diversity of applications for
percolation theory (for more on applications, cf. [Sahi94]).

Because of the stochastic nature of the problem, Monte Carlo methods were a
natural tool to be applied to percolation. Unfortunately, in the fifties and sixties,
computers had strongly limited capabilities. Together with rather simple algorithms
this yielded a situation where the Monte Carlo simulation of percolation was pos-
sible only for very small systems that did not show interesting behaviour. To cite
Hammersley and Handscomb: “The direct simulation [of percolation] is out of the
question” [HaHa64, p. 135]. Speed and memory capacity of computers grew expo-
nentially over the last decades (Moore’s law), but the real breakthrough for Monte
Carlo studies of percolation came with sophisticated algorithms in the year 1976.

11

The algorithm of Leath [Lea76a], [Lea76b] generates a cluster from a seed site
and uses a list of sites still-to-investigate for growing that cluster. The algorithm
of Hoshen and Kopelman [HoKo76] generates a whole lattice in linear manner and
uses a list of labels for accounting clusters generated on-the-fly.

The combination of modern algorithms with modern hardware made Monte
Carlo studies an effective tool for dealing with percolation. It has been possible to
get results of high precision. This thesis will present computational investigations of
percolation and the Ising model, combining powerful computers and new algorithmic
approaches.

1.3 Phenomena of percolation

One reason why percolation is so popular in statistical physics is that it is a very
simple, purely geometric and stochastic problem (to cite Stanley et al. [SAHM99]:
“In principle, Archimedes could have studied percolation”), but shows the full set
of phenomena found in other physical systems, like phase transition, scaling, and
universality. Clusters can have a fractal structure (cf. fig. 1.1 for an example), many
properties are governed by power-laws. Even more, the concept of renormalization
can be easily demonstrated on percolation.

Figure 1.1: A single cluster, simulated right at the critical threshold pc. Its fractal
structure is visible, notably it contains holes and has a ragged perimeter.

When there is a cluster that goes from top to bottom, we call this cluster “span-
ning” or “infinite”, because if we increase system size, a cluster retaining this char-
acteristic also increases in size, and for L → ∞ the cluster would become infinitely
large.

When we increase the occupation probability p from 0 to 1, we will recognize
that for a certain probability pc such an infinite cluster appears; below pc there is
none, above pc there is one. Because of the sudden switch behaviour, we speak of
a phase transition. pc is the critical point, below pc we speak of the sub-critical,
above of the super-critical phase.

Lots of effort has been put into finding exact values of pc, but so far only the value
for the one-dimensional lattice (pc = 1), and some values for two-dimensional lattices
(pc = 1/2 for site percolation on the triangular lattice, pc = 1/2 for bond percolation

12 Introduction

on the square lattice, pc = 2 sin(π/18) for bond triangular, pc = 1 − 2 sin(π/18)
for bond hexagonal, cf. [Grim99]) have been found. For other lattices, especially
for all lattices with d > 2, only numerical approximations are known (with the
exception of the so-called Bethe lattice, also known as Cayley tree, which is often
described as a lattice with d = ∞; for d → ∞, asymptotical behaviour is known,
cf. [Kest90]). Much computational effort was put into finding good approximations
for these pc (for example, [NeZi00], [Gras03], [PZS01], to cite only a few), as a
precise value is necessary to do simulations right at the critical threshold, were
most of the interesting physics happens. One remarkable fact is that the value of
pc depends heavily on microscopic details (the exact type of the lattice, e. g. square
vs. triangular in two dimensions), while other properties do not depend on these
details, but only on the dimensionality (i. e. differ for two and three dimensions).

Near the critical point, some system properties go with power laws; for example,
the weight of the infinite cluster P ∝ (p−pc)

β , the mean cluster size S ∝ |p−pc|−γ ,
or the correlation length ξ ∝ |p − pc|−ν .

Right at the critical point, the correlation length is infinite. This leads to the
interesting situation that the system is invariant under real-space renormalization,
in other words, when we rescale the system, it looks the same (cf. fig. 1.2; the idea
for that figure was taken from [SAHM99]).

Due to this self-similarity, we expect a power-law for the distribution of clus-
ter sizes right at the critical point (power-laws are self-similar under rescaling; for
P (x) = xa, P (c · x) = (cx)a = caxa ∝ P (x), with c and a constants):

ns(pc) ∝ s−τ (1.1)

This power-law is modified for small cluster sizes s, as then the lattice spacing is an
inherent length that breaks self-similarity; away from the critical point, the power-
law is modified as the system no longer is self-similar on all length-scales. The full
ansatz for the cluster size distribution is (cf. [Stau75], [StAh94])

ns(pc) = k0s
−τ · (1 − k1s

−∆1 + . . .)
︸ ︷︷ ︸

for small s

· f((p − pc)s
σ)

︸ ︷︷ ︸

away from pc

, (1.2)

where the second term is the correction for small clusters and the third for p away
from pc. Here we can notice another important property of percolation, which plays
a central role in modern statistical physics: universality. This means that a special
quantity, like a critical exponent, does not depend on microscopic details; e. g. it
is the same for a square lattice and a triangular lattice. In eq. 1.2 τ is universal,
while k0 is not. When two different physical systems share the same set of critical
exponents, these belong to the same universality class. Non-universal properties
may still differ, of course.

For percolation, scaling arguments relate several critical exponents with each
other (cf. [Stau79]): 1/(τ − 2) = 1 + γ/β, where τ is the exponent for the cluster
size distribution right at the critical point, β is the exponent for the size of the
infinite cluster, and γ that for the mean cluster size (the exponents β and γ are
not investigated here, as these require many simulations with slightly different p,
which costs too much of the precious computing time; τ or ∆1, on the other hand,
can be extracted from a single run). The scaling function f(z) is not investigated
here for the same reason. The Newman-Ziff algorithm (cf. section 1.4.4) allows for
efficiently investigating percolation observables depending on p, but is not further
investigated in this thesis.

Above six dimensions, the cluster numbers ns are expected to follow mean-field
theory, for which the critical exponents are the same for all dimensions d > 6 (for
this reason, du = 6 is called the upper critical dimension). Additionally, f(z) is
expected to be a Gaussian.

13

Figure 1.2: Renormalization of an infinite percolation cluster by averaging over
sites, creating super-sites. Top row is for p = 0.585 < pc (in this case, the largest
cluster is plotted, as no infinite cluster forms), middle row for p = 0.5927464 ≃ pc,
bottom row for p = 0.6 > pc. For each renormalization step, a patch of 3 × 3 sites
is averaged to one super-site, i. e. if there are more free than occupied sites in the
patch, the resulting super-site is free, and vice versa. Columns from left to right
are zero, one, and two renormalizations. For p = pc, the system stays self similar,
e. g. the holes have roughly the same size and geometric features stay the same.
For p < pc, the holes grow, and after enough steps the cluster vanishes, as it is no
longer infinite (does not fill the whole lattice). For p > pc, the holes shrink, the
infinite cluster starts to obtain bulk properties; this effect increases for increasing
p.

14 Introduction

1.4 Computational approaches—algorithms

As only for special cases exact solutions of percolation are available, using a com-
puter to study the problem is a reasonable approach, especially as computers nowa-
days offer huge memory and high computing speed. The fastest machines on earth
offer now hundreds of TFlops (TFlops: 1012 floating point operations per second),
with PFlops possible even in this decade. The Top 500 list of the fastest supercom-
puters of the world, published semi-annually at www.top500.org since 1993, shows
exponential growth of computing power over time. There is deceleration expected
for the near future. A major fuel for growth is the invention of massively parallel
computers. These require adapted algorithms in order to fully exploit their power;
while processes in physics have inherent parallelism, many algorithms devised for
simulating these are sequential in nature (as they were written for sequential com-
puters in the first place) and have to be adapted to parallelism.

In order to study percolation, several algorithms have been developed; some of
these shall be presented in this section, and one, the Hoshen-Kopelman algorithm
with some variants, will be covered in detail in the rest of this thesis.

Due to the stochastic nature of percolation, the model is well suited to be studied
with Monte Carlo methods, but also exact enumeration is used. Both approaches
have advantages and disadvantages: Exact enumeration gives exact results (within
its domain) and is directly understandable, but only suitable to very small systems
(which show qualitatively different behaviour from larger systems, as will be shown
e. g. in chapter 4). Monte Carlo algorithms allow for studying very large systems
(cf. chapter 3), but introduce errors into the results, which make careful analysis
necessary (for more on errors in Monte Carlo simulation, cf. appendix C).

1.4.1 Exact enumeration

Although it would be nice to do a full enumeration of all possible configurations for
a lattice of size N = Ld, this would be a Herculean task for all but the smallest L,
as each site of the lattice can be occupied or free, resulting in 2N configurations,
an exponentially growing number. Even a very small 8 × 8-lattice would require
examination of 264 configurations; even the number of configurations could not be
stored in the 64-bit word of modern computers. In Monte Carlo simulations not all

configurations are realized, but only a very small subset of considerably probable
configurations which are deemed representative. Therefore, exact enumeration of
lattices is nowhere used.

Another way of exact enumeration is to enumerate clusters, not whole lattices.
This is useful for investigating the properties of clusters. The number of possi-
ble configurations for a cluster grows exponentially, so the enumeration of clusters
seems to suffer from the same disadvantages as the enumeration of lattices. But
given all possible clusters of size s, it is possible to calculate the perimeter poly-
nomial ns(p), which gives the probability that a specific site belongs to a s-cluster
at occupation probability p (or in other words, the concentration of s-clusters in a
lattice). Using these polynomials, it is possible to determine pmax(s) (where ns(p)
becomes maximal), and by extrapolating to s → ∞, to find a value for pc, with in-
creasing precision for perimeter polynomials for increasing s (cf. [Syke86], [Mert90],
[MeLa92], [Mart90]).

1.4.2 Justification for Monte Carlo algorithms

While exact enumeration of lattices or clusters is futile for large entities, it is also
not necessary. As an example, an Ld = N lattice with only one occupied site, all
others free, has a probability of formation of Np(1 − p)(N−1). For intermediate p

http://www.top500.org/

15

and large enough lattices, this probability is low enough to be neglegible, meaning
that we can omit enumerating these configurations. Even more, all N possible
configurations are equivalent, so counting only one would be enough.

Instead of generating all possible configurations, investigating them, and then
averaging the observables by statistical weight, it is more reasonable to generate
configurations only with a probability proportional to their statistical weight. This
is in essence what is done with Monte Carlo algorithms. With a fixed probability
p, we occupy sites or leave them free (1 − p), and generate configurations which
are probable for the chosen p. By repeating this, we obtain several representative
configurations, and can then average over these.

The Leath algorithm generates clusters by randomly occupying sites, while the
Hoshen-Kopelman algorithm generates lattices. The Newman-Ziff algorithm is spe-
cial, as it occupies from 0 to N sites in a lattice, sweeping all possible values of p,
but it does so in a random order.

In essence, all these Monte Carlo algorithms choose representative samples out
of the huge number of possible configurations, by generating these samples with a
random process.

1.4.3 Leath algorithm

The Leath algorithm was published in 1976 by Leath, cf. [Lea76a], [Lea76b], and is
used to generate single clusters. It uses two data structures, a lattice of sites’ status
(which can be ‘occupied’, ‘free’, or ‘unexamined’) and a list of sites that need to be
examined. At the start, one site in the lattice is marked as occupied, its neighbours
are added to the list. Then for all sites in the list, a random number is generated and
the site is marked as occupied with probability p or free with 1− p. All neighbours
of that site which are marked as unexamined, are added to the list. The process is
repeated until no more sites are left on the list. After that, the lattice contains one
cluster that can be investigated further. Some observables can be calculated on the
fly during the cluster generation (e. g. number of sites in the cluster).

It is possible to generate lattice statistics using this method, e. g. the size distri-
bution of clusters ns. When using lattices large enough that no cluster reaches the
borders, i. e. it grows until it stops naturally (due to the random numbers), then
no finite size effects occur. By simulating many clusters and accounting them, we
get a reasonable statistic for ns, which can always be improved by just simulating
more clusters.

The lattice can become quite large for large clusters. There are several tricks
available in literature that cut down on this memory requirement, by storing only
parts of the lattice (as the cluster does not grow homogeneously), cf. [Gras03] for
an example and a literature list, or by not storing the lattice at all, cf. [PZS01].

1.4.4 Newman-Ziff algorithm

When simulating percolation, we are in many cases not only interested in results for
one fixed p, but for several different pi. The traditional method was to do several
independent simulations using e. g. the Hoshen-Kopelman algorithm, each with a
different pi. When we use exactly the same sequence of pseudo-random numbers,
this means that for small p some sites are left free which would be occupied for
higher p. Another way to achieve this would be to fill the lattice in random order,
starting with no occupied site and ending with all sites occupied, and counting
clusters for each occupied site that is added.

This is the basic idea of the Newman-Ziff algorithm, which was published in
2000 by Newman and Ziff [NeZi00]. They start with an empty lattice and occupy
one site after the next in a random order. This is achieved by generating a list

16 Introduction

of all lattice sites, fully permuting this list, and then walking this list. For each
added site, clusters are counted and statistics stored. In order to obtain results in
dependence on p, not on n (number of occupied sites in the lattice), a convolution
is necessary. This is an expensive operation, but has to be done only once for each
observable we are interested in. It is possible to generate many lattices and average
them (using different random orders, in order to produce better statistics), only
afterwards doing the convolution.

This algorithm is naturally well suited for studying observables in dependence on
p. Probably the most important of these is the binary observable, if a infinite cluster
forms or not. The probability where this step occurs is the critical probability pc

of the phase transition. Newman and Ziff used this to measure pc with very high
precision.

De Freitas, Lucena and Roux published a similar algorithm, but for the context
of time dependent percolation [FLR99, FrLu00].

1.4.5 Hoshen-Kopelman algorithm

The Hoshen-Kopelman algorithm, published in 1976 by Hoshen and Kopelman
[HoKo76], examines a lattice in linear fashion, site after site. It can be used to
count clusters in an existing lattice (that is, experimental data), but in Monte
Carlo studies the lattice is generated on-the-fly (when we examine a site, we roll the
dice and decide by this if it is occupied or free). In this case, one main advantage
of the algorithm is that we do not have to store the whole lattice in memory, but
only one line in two dimensions, one plane in three dimensions, and more generally:
if we are examining an Ld lattice, we only have to store Ld−1 sites, which yields a
significant advantage for memory consumption in low dimensions.

Let us now examine a small lattice using the Hoshen-Kopelman algorithm. Bul-
lets mark occupied sites:

We now go through the lattice line by line, and within each line from left to
right. Whenever we encounter an occupied site that is not connected to another
occupied site to the left or to the top, we say that this site starts a new cluster and
assign it a new number as cluster label, starting from 1. Additionally, we put this 1
(number of sites in cluster) into a label array, under the label of the newly created
cluster (for technical reasons, we give it a negative sign). On the other hand, when
the site under investigation has an occupied neighbour to the left or top, it inherits
its cluster label from that neighbour. Another site is added for this label in the
label array. Thus, after seven examined sites our lattice and the label array look
like

1
1

2
3 ?

3
2
1 −2

−1
−1

17

The eighth site has two occupied neighbours with different cluster labels, so we
have to decide which of them shall be the new cluster label for the site currently in
examination. When we choose label 2, we also have to renumber the sites carrying
the label 3, because our assumption that they were different clusters showed as
wrong. For large clusters, this would require a lot of work.

The genuine idea of the Hoshen-Kopelman algorithm is to let the sites labeled
as they are and instead write down a notice that clusters 2 and 3 belong together.
In practice this is done by using a separate data structure that holds information
about the cluster labels: for a direct or “root” label, it records the number of sites
within that cluster, for an indirect or “non-root” label, it records to which “real”
cluster label this label belongs. This distinction is made within the label list simply
by the sign of the integer number.

1
1

2
3

3
2
1

2
−2
−3
2

After the whole lattice was examined, our supplementary data structure contains
all information we need: Each “real” cluster corresponds to a root label, which also
records the number of sites in that cluster. All non-root labels point directly or
indirectly to a root label. They carry no information, as their only purpose was to
spare us the costly renumbering of sites.

Because we investigate line by line and only need information for the left and
top neighbour of the site in investigation, we only need memory for one line of size
Ld−1 when investigating a lattice of size Ld. Additionally, we also need memory
for the supplementary data structure containing information about the labels. A
lot of space within this data structure is occupied by non-root labels that carry
no information, but are only a trick that speeds up simulation. When doing huge
simulations, it is thus a good idea to recycle this wasted space by relabeling the plane
currently in investigation with root labels only, and then throwing away all non-
root labels. Even more, we can mark all root labels within our data structure that
are present in the currently examined hyperplane, and afterwards throw away all
non-marked root labels, as they belong to clusters that “died out” above the current
hyperplane. Of course, these root labels need to be accounted before discarding
them. This method is known as Nakanishi recycling (cf. [NaSt80]).

By using the Hoshen-Kopelman algorithm with Nakanishi recycling, it was pos-
sible to simulate percolation on impressively large lattices, as for low dimensions not
computer memory, but only computer speed was a limiting factor. With the advent
of powerful supercomputers, Monte Carlo techniques proved as a useful tool for
studying percolation that allowed extremely high precision for the determination of
interesting properties. This allows us to reverse Broadbent’s remark on Monte Carlo
studies of percolation [Broa54] “The capacity of computers is, however, insufficient
for any but small lattices. This is another example of the authors’ remark that
pen and paper might be better than machine work” to the computer programmers’
remark “Machine work might be better than ink and paper”.

A rather new trend in supercomputing are massively parallel computers. They
emerged as a tool for general purpose computing with the beginning of the 1990s
and now have nearly fully replaced the once ubiquitous vector supercomputers.
They offer unrivaled performance for a rather low price (compared to traditional
vector machines), but they have one major disadvantage: Traditional algorithms

18 Introduction

were designed for sequential, single-processor computers and cannot simply be used
on massively-parallel computers. Instead, massively-parallel processing (MPP) re-
quires completely new or at least heavily restructured algorithms. This is the main
reason why MPP is not as widespread as one would expect. On the other hand,
rather cheap compute clusters, built from commodity components, offer parallel
computing power without the price premium of custom-made MPPs, and thus the
use of replication is justifiable (often contemptuously called “poor man’s paral-
lelization”). This is especially important in the field of Monte Carlo simulations, as
averaging over several runs for the same parameters, only using different random
numbers, is important to improve statistics and reduce errors.

While parallelization of serial algorithms is generally challenging, sometimes it
is reasonable to put effort into porting algorithms to MPP. This is true also for
percolation, because more speed or more memory for simulating a larger lattice
means a higher precision for determining properties of interest. There are several
ways to parallelize the Hoshen-Kopelman algorithm in a reasonable way, some of
them were already presented in literature [FlTa92, FlTa95, Grop95, HMS93, KeSt92,
Tama93, TeGi00]. Here (cf. chapter 3), a new, rather complicated, but promising
way was chosen. Using this algorithm, it was possible to achieve new world records
in simulated system size, which substantially improved upon the old world records.
In the meantime, the world record for two dimensions presented here was challenged
by Moloney and Pruessner [MoPr03], but they never published the results for their
world record run (not even on direct request), thus it is hard to accept their claim
for a new world record.

Another variation of the Hoshen-Kopelman algorithm, which allows simulation
of growing percolation lattices, and thus making size-dependent properties directly
available, is presented in chapter 4.

Chapter 2

Fluctuations of Cluster

Numbers

2.1 Introduction

Percolation is a thoroughly studied model in statistical physics. Normally, only
the mean numbers 〈ns〉 of clusters are studied, but their fluctuations are ignored.
In order to study these fluctuations, it is necessary to investigate distributions,
i. e. many independently generated lattices.

This need leads to the method of replication: instead of parallelizing a single
run (by domain decomposition or other means), a conventional, sequential program
is used, but with many runs in parallel, each with different parameters (here, the
inital seed for the random number generator is changed for each run). Due to the
simplicity, this method is also called “poor man’s parallelization”; nevertheless, it
can be reasonable science (as it is here) and can offer valuable insight, with very
little effort.

Well suited to replication are problems that can be simulated on single pro-
cessor computers (meaning that memory consumption or wall clock time are no
restrictions), and it is necessary to sweep a parameter region.

2.2 Statistical measures

When investigating fluctuations of ns, we are interested in how these ns are dis-
tributed for many independent simulations. One method to describe such distri-
butions are histograms, i. e. counting how many times a simulation result ns fell
into the interval [ns,i, ns,i+1[; another method is to characterize a distribution by
its statistical measures mean, variance, skewness, and kurtosis.

An important distribution is the so-called Gaussian; a Gaussian distribution of
a variable x is described by

f(x) ∝ e−
(x−x̄)2

2σ
2 ,

with mean x̄ = 1/N
∑

xi, often denoted 〈x〉, and variance σ2 = 1/(N − 1)
∑

(xi −
x̄)2, often written as 〈x2〉−〈x〉2. The mean describes the position of the maximum,
while the variance describes the width of the Gaussian. The square root of the vari-
ance is the standard deviation, which is often taken as a measure for the statistical
error. Further measures are the skewness Skew(x) = 1/N

∑
[(xi − x̄)/σ]3, which

describes if and how the distribution is skewed with an asymmetric tail to the left
or right, and the kurtosis Kurt(x) = 1/N

∑
[(xi − x̄)/σ]4 − 3, which describes if the

distribution is more peaked or more flattened than a Gaussian. Both skewness and

19

20 Fluctuations of Cluster Numbers

kurtosis vanish for a true Gaussian (that is the reason why the term −3 appears
in the definition of the kurtosis), i. e. they measure the non-Gaussianness of a dis-
tribution. For more details and an example implementation for calculating these
measures, cf. [PTVF92, chapter 14].

2.3 Simulations

To study fluctuations of cluster numbers, lattices of different sizes have been in-
vestigated thousands of times with different random numbers, using the Hoshen-
Kopelman algorithm. Only two-dimensional site percolation on square lattices was
studied, at the critical threshold pc = 0.5927464 (cf. [NeZi00]; this value was chosen
for all simulations of percolation in two dimensions throughout this thesis, in order
to obtain comparable data); fully periodic boundary conditions were used in or-
der to mitigate perturbation of open boundaries, which would overshadow all other
finite-size effects (see section 3.3.3 for a more detailed discussion).

Investigated lattice sizes were L = 103, 2 · 103, 3 · 103, 4 · 103, 7 · 103, 1.5 · 104,
3 · 104 (5000 runs each), 5 · 103, 104 (20000 runs each), 2 · 104 (40000), 105 (1500).
The simulations were done on fast workstations; the implementation of the Hoshen-
Kopelman algorithm was sequential, but of course independent runs could be done in
parallel, using replication. Although this is the most primitive way of parallelization,
it is well suited for this type of study.

For random numbers the six-tap generator R(18,36,37,71,89,124)was used (cf. ap-
pendix D). Total required CPU time was about 2500 hours.

2.3.1 Distribution of Cluster Numbers

Plotting the distribution of cluster numbers for clusters of fixed size s yields Gaus-
sians for small s, cf. figure 2.1; the position of the maximum (corresponding to
〈ns〉) becomes smaller for larger s, in compliance with the well-known power-law
ns ∝ s−τ (see section 1.3 and subsection 3.3.1 for a discussion of this power-law);
the width of the Gaussian (corresponding to the variance 〈n2

s〉−〈ns〉2) also decreases
for increasing s.

1

10

100

1000

10000

6.51e+06 6.515e+06 6.52e+06 6.525e+06 6.53e+06 6.535e+06

O
cc

ur
re

nc
es

ns

Figure 2.1: Histogram of occurences of ns for s = 1, L = 2 · 104, and 40000 runs.

21

When 〈ns〉 becomes small enough with increasing s, the left-hand side of the
distribution gets distorted and finally vanishes, as cluster numbers have to be pos-
itive integers. This is a finite-size effect, as for large L this effect takes place for
larger s, cf. figure 2.2.

1

10

100

1000

10000

0 5 10 15 20 25 30 35 40 45

O
cc

ur
re

nc
es

ns

Figure 2.2: Distribution of ns for s = 700, for L = 5 · 103 (+), L = 104 (×), and
L = 2 · 104 (2); 20000 runs each.

The right-hand side remains quasi-Gaussian, it fits exp(−const · sζ), with ζ = 2
for small s and ζ decaying slowly for increasing s; this is consistent with results for
skewness and kurtosis, see below.

2.3.2 Variance of cluster numbers

The mean 〈ns〉 shows the expected power-law ns ∝ s−τ , with corrections to scaling
(1 − k1s

−∆1) (τ = 187/91 is known exactly, ∆1 = 0.70(2) can be extracted from
data here; ∆1 is discussed in more detail in subsection 3.3.2); the same is true for
the variance 〈n2

s〉−〈ns〉2, including the same corrections to scaling. Thus we expect
(〈n2

s〉−〈ns〉2)/〈ns〉 = 1, as Coniglio et al. claimed a long time ago [CSS79]. However,
for small s, we see a power-law dependence (〈n2

s〉 − 〈ns〉2)/〈ns〉 − 1 = k2s
−∆2

(Coniglio et al. saw only a deviation for s = 1, as they had far less computing
capacity). A graphical estimate yields ∆2 = 1.2(2) and k2 = 0.25(5), cf. figure 2.3.

2.3.3 Skewness and kurtosis of distributions

It is interesting not only to investigate the mean and variance of ns, but also higher
moments like skewness and kurtosis. While mean and variance are enough to de-
scribe a true Gaussian, the parameters skewness and kurtosis can describe deviations
of such a Gaussian.

The skewness grows linearly with s, cf. figure 2.4; this means that the skewness
becomes too large to be useful for increasing s; this is due to the distortion of the
distributions.

The kurtosis shows no power-law dependence, cf. figure 2.5; for intermediate
s it grows exponentially, for large s the situation is unclear; far more extensive
simulations need to be done to clarify this. But here, too, the kurtosis is no good
measure for large s.

22 Fluctuations of Cluster Numbers

0.001

0.01

0.1

1

1 10

va
ria

nc
e/

m
ea

n
-

1

s

Figure 2.3: Variance divided by mean for L = 2 · 104 and 40000 runs. The black
bullets correspond to the full set of 40000 runs; the other signs correspond to four
partitions of 10000 runs each. This partitioning was done to look for systematic
deviations for specific s; none are visible. The solid line corresponds to the power-
law k2s

−∆2 , with k2 = 0.25 and ∆2 = 1.2 chosen.

-1

0

1

2

3

4

5

6

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
ke

w
ne

ss

s

Figure 2.4: Skewness for L = 2 · 104, 40000 runs.

23

1

10

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

K
ur

to
si

s

s

Figure 2.5: Kurtosis for L = 2 · 104, 40000 runs.

2.4 Summary and outlook

The variance of the cluster numbers is equal to their mean, with power-law cor-
rections for small cluster sizes s: 〈n2

s〉 − 〈ns〉2 = 〈ns〉(1 + k2s
−∆2), ∆2 = 1.2(2),

k2 = 0.25(5).
The distributions of cluster numbers are Gaussians for small s and become dis-

torted with increasing s, yielding growing values for skewness and kurtosis. The
skewness grows linearly with s, the kurtosis grows exponentially for intermediate s.

Further studies of fluctuations can be done while studying other properties of
percolation; as Monte Carlo algorithms demand averaging over several independent
runs for obtaining better statistics, distributions of cluster numbers come for free.

24 Fluctuations of Cluster Numbers

Chapter 3

Parallelizing the

Hoshen-Kopelman algorithm

using domain decomposition

3.1 Devising a parallelized version of the Hoshen-

Kopelman algorithm

In the previous chapter, we have seen that replication can be a viable approach
to parallelization for some scientific problems. Precondition is that each of the
seperate runs fits into the memory of a single-processor machine. If this is not
possible, we have to divide the data we use in our program into parts and distribute
these over the memory of several single-processor machines, normally by means of
domain decomposition. This way, we do not only acquire more memory, but also
more processing power; ideally, N processors should solve our problems N times
faster. This makes very large simulations feasible.

Sometimes large simulations are needed to investigate effects that are not visible
in small systems, or in order to test hypotheses over several orders of magnitude in
system size; power-law or logarithmic corrections to intrinsic behaviour can produce
qualitatively different results for small and large systems. Even more, larger systems
promise better precision for Monte Carlo data (cf. appendix C). In short: size does
matter in science, too.

The advantage of parallelization (more memory, more processing power) comes
with two disadvantages: parallel overhead for computation (N processors are less
than N times faster), affecting the computer, and increased difficulty of program-
ming, affecting the human programmer. In this chapter, the parallelization of the
Hoshen-Kopelman algorithm by domain decomposition into vertical strips is de-
scribed, a fruitful approach which produced world records in simulated system size.
This method was originally published in the diploma thesis [Tigg01]; here it is
refined, e. g. by adding fully periodic boundary conditions. Furthermore, while
[Tigg01] published source code parallelized with shmem-directives, which are avail-
able only for a few parallel computers, appendix F of this thesis presents a program
parallelized with the MPI library, which is available on nearly every parallel com-
puter in use today. Hopefully other scientists can use this program for their research.
Some comments on how to work with the code and how to extend it can be found
in appendix F.2.

25

26 Parallelizing Hoshen-Kopelman

3.1.1 Domain decomposition

One of the major limitations for the Hoshen-Kopelman algorithm in higher dimen-
sions is memory, or lack thereof. An old world record size for a simulation in
four dimensions was 6114 (cf. [Stau00]), which required approx. 1.5 GByte only for
storing the hyperplane of investigation, aside from more memory needed for supple-
mentary data structures. Pushing this world record further requires huge amounts
of memory not available in standard sequential computers.

Fortunately, massively parallel computers offer the necessary amounts of mem-
ory. Unfortunately, they use a programming model of distributed memory, where
the whole memory is divided into partitions onto which only single processors have
direct access; access by other processors has to be done by message passing, which
requires explicit parallel programming.

On distributed memory machines, for implementing algorithms that operate on
regular data structures like lattices, the standard method is domain decomposition.
The lattice that shall be simulated is cut into several domains, and each domain
is assigned to one processor and its local memory. When sites from one domain
interact with sites from another domain, these interactions have to be programmed
using message passing. Interactions within a domain are programmed like in a
conventional algorithm.

For the Hoshen-Kopelman algorithm, there are several reasonable ways for de-
composing the lattice. As the algorithm walks through the lattice hyperplane by
hyperplane, it makes sense to classify the different resulting domains into those
parallel and those perpendicular to one such hyperplane.

A decomposition into parallel (or “horizontal”) strips would offer one big advan-
tage: within each domain, all interactions would be local and no message passing
is required. Only after the whole domain has been investigated, communication
between the domains resp. processors is necessary. This allows for the easy imple-
mentation of the Hoshen-Kopelman algorithm, as the local part within the domain
is simply the standard algorithm for sequential computers. But there is also one
disadvantage: each processor has to store one full hyperplane. For high dimensions,
this would require too much memory (even in three dimensions).

On the other hand, a decomposition into perpendicular (or “vertical”) strips
would divide the hyperplane into pieces, so that each processor has to store only
a small amount of data. We could thus simulate larger lattices. Theoretically, if a
single processor can handle a Ld−1 hyperplane in memory, N processors can handle
lattices of linear size L′ = N1/(d−1)L. Of course, this advantage comes at a price:
during the simulation sites from different domains interact with each other and so
message passing becomes an inherent ingredient of our algorithm. In other words:
the algorithm would be much more complicated. But it is worth the effort.

3.1.2 Clusters extending over several sub-domains

The main problem when decomposing the lattice into vertical strips is that sites
from different strips can interact in a non-regular manner. For example, a cluster
which was local in a strip gets in contact with a cluster from the left strip. Those
two need to be joined, which makes communication necessary. Or even worse, a
cluster from the left strip and a cluster from the right strip join in the middle strip.

When designing algorithms for massively-parallel computers, it is important to
keep in mind the limitations of message passing: delivering messages is about one
or two orders of magnitude slower than direct access to local memory. Even worse,
many small messages require much more time for delivery than one large message.
It is therefore a good idea to bundle messages.

27

Figure 3.1: A sketch of domain decomposition for two-dimensional percolation; on
the left side, a sequential implementation, on the right side, a parallel implemen-
tation decomposed into two sub-domains. The site with a strong black border is
the site currently in investigation. The full lattices are not stored, but exist only
virtually (thus the dotted lines). The line which is in investigation is stored (solid
lines). The current site is connected to left and top neighbours (arrows), left was
investigated one step before, top is stored in the line and will be overwritten with
results from the current site, afterwards the site to the right will be investigated
(flow is indicated by dashed arrow).

When investigating its piece of the hyperplane, each processor should defer com-
munication until it has finished investigation; this is the local part. After this, all
processors exchange the information in a regular manner. This is the reason why
the algorithm becomes complicated, but this complexity is necessary for efficency.

We introduce the notion of local clusters and global clusters. Local clusters are
clusters in the lattice, whose occupied sites all lie in the same strip. Global clusters
consist of occupied sites which are distributed among several strips.

The local clusters can be handled like in the sequential Hoshen-Kopelman algo-
rithm. Only when they extend to the border of the strip, we have to find out if they
become global (by means of communication). With the global clusters we have to
be careful: When modifying global clusters during the local part, we later have to
inform the neighbour strips (those in which parts of the cluster are present) about
possible changes.

We extend our supplementary data structure of labels: There are no longer only
non-root and root labels, but root labels are divided in local ones (corresponding
to local clusters) and global ones (corresponding to a part of a global cluster). Of
course, each processor has its own local array of labels. A global label records the
number of sites in that cluster within that strip, the left neighbour (that is, the
global label in the left neighbour strip that corresponds to the same global cluster)
and the right neighbour. Either left neighbour or right neighbour can be void in a
global label, but not both, because in that case it would describe a local cluster.

We introduce a local label array (analogous to the traditional label array in
Hoshen-Kopelman) and a global label array. For simplicity (one of the most de-
sirable properties when parallelizing programs), both local and global labels have
entries in the local array; these are distinguished by a single bit; just as the sign
determines if a label is an indirect one, pointing to another, or a direct one, meaning
the array contains the number of sites in the cluster, we use the least significant bit
in that array entry to determine if it is a local label (and thus contains the number
of sites in the cluster) or a global one, in which case it points to the corresponding
global entry in the array of global labels.

When adding a site or a whole local cluster to a global cluster during the local
part, we simply record the number of added sites in the global label. But when two
global clusters join, we have to inform the neighbours about this change. Let us

28 Parallelizing Hoshen-Kopelman

call this process “pairing”, as a pair of clusters is joined forever.

When the local part is finished, the borders of the strips have to be examined,
in order to find out if there are interconnections between clusters in different strips.
In such cases, local labels can be converted to global ones.

local
label sites

1 3

1 3

local
label sites

local
label sites

local
label sites

global
rightleftsiteslabel

global
rightleftsiteslabel

M1 3 N

1 3M1 − 3 N 1 −2[1] [2]

Figure 3.2: Suppose we have finished one local examination of the divided line
of investigation. The left processor has a local cluster labelled ‘1’, with M sites
in it, the right processor a cluster ‘3’ with N sites (top part of diagram). When
exchanging boundaries, both clusters need to be joined, as they touch each other
(bottom part). Both need to be converted from local to global status. Entries in
the global arrays are allocated, the number of sites for the cluster parts are put
into it. Furthermore, the left processor puts the label of the former local cluster
in the right processor into its global array, and vice versa. This is done to keep
these cluster in contact (they may even grow to other processors). In the local
arrays, the numbers of entries in the global array are entered for the labels; these
are marked by setting the least significant bit. Solid lines show the connection from
local label to global one within a processor; dashed lines show how the parts of the
global cluster reference each other. It is important to note that even global labels
are always referenced through local ones, both within and across processors. This
avoids relabeling of sites in the hyperplane of investigation; even more, it ensures
that local and global labels can be treated equally for reclassification and other
parts of the program.

Even more, let us examine the following situation: In our strip, we have two
different global labels that are connected to two different global labels in the left
neighbour strip. Now these two clusters join during our local part. It is easy to
achieve that these two different clusters are joined within our strip, but we also have
to inform our left neighbour, because the two labels in that strip have to be joined,
too. And what if they also have connections to the next left strip? We have to
pass the information even further. In order to avoid such complex communication
patterns, we once again use the method of deferred information exchange: we store
the information that two global labels have to be paired in a special data structure
and exchange these data with our nearest neighbours after the local part. When this
triggers the pairing within the next-nearest neighbours, our nearest neighbour puts

29

a note into its data structure and informs the next-nearest neighbour one local part
later. Thus, the necessary information for pairing large global clusters (that span
several strips) trickles along the strips step by step. Of course, when we need to
rely on the fact that all global labels are correctly paired, we have to do a lengthy
relaxation process: we repeat the nearest-neighbour pairing over and over again,
until there is no longer any pairing information exchanged between any strips.

So, our algorithm now looks like this: Within the strip, do the normal Hoshen-
Kopelman algorithm in our part of the hyperplane. Whenever two different global
clusters join, put an entry into our pairing data structure. After the local part
is finished, exhange the borders with our neighbour strips and find out if there
are interconnections between the strips. In that case, convert local clusters to
global ones (if they are not already global). Exchange pairing information with our
neighbour and do the pairing. If new pairing information arises, simply record it;
we will exchange it after the next hyperplane.

3.1.3 Recycling of redundant labels

When simulating large lattices, we have to keep memory consumption low. Unfor-
tunately, much memory is wasted for non-root labels. On sequential computers, we
can recycle this memory easily (using Nakanishi recycling). On parallel computers,
this becomes a difficult and complicated task.

After we have relabeled our current hyperplane with root labels only (both local
and global ones), we can safely delete all non-root labels that point to local root
labels, as these correspond to clusters within our strip that were never in touch
with other strips (otherwise they would point to a global root label). On the other
hand, we must not delete non-root labels that point to global root labels, as they
were possibly in touch with labels of other strips, and those other strips still could
reference them (avoid “dangling pointers”).

So, one prerequisite for recycling “global” non-root labels is to replace all ref-
erences to global non-root labels by references to global root labels. We do that
as follows: we walk through the list of our global labels and put their pointers to
left (resp. right) neighbours in a message, which we send to the left (resp. right)
processor. This one reclassifies all these labels and sends the message back, so that
we can replace the old references to neighbour labels by the reclassified ones. After
this process, all global labels reference only root labels in other strips, which allows
us to safely delete all non-root labels.

Local root labels can be easily recycled the same way as in the sequential Hoshen-
Kopelman algorithm: all local root labels that are still present in the current hy-
perplane are marked, all non-marked local root labels can be deleted. Of course,
we must not mix local and global root labels.

The number of global labels generated is roughly proportional to the size of the
interface between the strips. For higher dimensions, this means that we need to
recycle even global root labels (for two dimensions, this is not necessary). We do
this by reduction of global clusters: a global cluster extends over several strips. In
the strip that contains the right end of the cluster, we investigate if the part of
that cluster in that strip is still alive (present in the current hyperplane); if not, we
recycle it and inform the left neighbour of that fact (we also send the number of sites
present in the recycled part, so that it can be added to the still-alive part). When
the left neighbour that receives the message has itself no left neighbour, it can be
safely converted to a local cluster (it just has lost the right neighbour). During the
next recycling, it can be discarded in the local recycling process.

This reduction of global clusters is remarkably similar to the concentration pro-
cess needed for accounting global clusters, described in the following subsection.
The difference is that for recycling global labels, only “dead” labels are reduced,

30 Parallelizing Hoshen-Kopelman

while for full cluster accounting all global labels are reduced. Due to this similarity,
both can be done using the same subroutines, cf. appendix F.2.

3.1.4 Counting of clusters

After we have done the whole simulation, we have to count the clusters that we
have detected, by examining the list of labels. Due to the parallelization, this is
more complicated than in a sequential simulation, as some clusters are distributed
over several strips, having root labels in each. These have to be joined, so that they
can be correctly accounted. We do this by a concentration process: Each processor
examines its global root labels. For each such label that has a left neighbour, it
sends the number of sites of that label to the neighbour (together with the number
of the corresponding label in the left strip) and records that the label no longer
carries sites. It then receives the data from its right neighbour and adds the sites to
the corresponding global label. By repeating this process, the number of sites for
a global cluster is concentrated in the leftmost strip the cluster extends to. After
this, clusters can be counted locally in each strip; the obtained data is added later
by one single processor.

One exception is the infinite cluster, as this can extend over all strips and wrap
around to itself. In that case, it cannot be concentrated. This allows us for an easy
detection of connectivity: If we discover after the concentration that there is one
cluster which has not been concentrated, then this is the infinite one. We sum it up
by investigating the corresponding labels within all strips.

3.1.5 Fully periodic boundary conditions

When simulating a d-dimensional lattice, boundary conditions determine how the
hyperfaces of the Ld hypercube are interconnected (e. g. the left and right face of
a cube). Open boundaries mean that these are not connected at all, while periodic
boundaries mean that a given site in the left face has as left neighbour the site
with the same coordinates (within the face) in the right face, and vice versa. A
square lattice with fully periodic boundaries in both dimensions becomes a torus
(cf. fig. 3.3), a cubic lattice becoms a hypertorus, etc.

Due to the domain decomposition in strips, periodic boundary conditions come
for free in one dimension, in the direction perpendicular to the strips. In d > 2 di-
mensions, for d− 2 directions we can easily implement helical boundary conditions,
by storing the hyperplane in a linear array and accessing neighbouring sites using
offsets of ±1, ±L, ±L2, . . . ; helical boundaries are essentially like periodic bound-
aries, but with a twist of one site. They behave essntially the same, i. e. they do not
introduce open borders into the system. Therefore periodic and helical boundary
conditions are normally summarized as periodic.

In the direction in which the hyperplane of investigation moves during the HK
algorithm, the lattice has open boundaries. These can be made periodic by storing
the first (uppermost) hyperplane after it has been simulated, and then connecting it
to the lowermost hyperplane after the whole lattice has been simulated. Addition-
ally, it is important for recycling to consider not only labels present in the current
hyperplane, but also those in the first.

Combining these techniques, we can simulate lattices with fully periodic bound-
ary conditions, meaning that no open borders are present in the system, preventing
systematic errors due to these. The disadvantage of this method is that twice the
amount of sites need to be stored for the hyperplanes; for high dimensions, this can
limit the size of lattices that can be simulated. But in many cases, smaller lattices
with fully periodic b. c. yield more precise results than larger lattices with open
b. c. Section 3.3.3 shows examples.

31

Figure 3.3: When connecting the left and right resp. the top and bottom sides of a
square lattice, the result is a torus, without any open border.

3.1.6 Step-by-step description of the algorithm

The following list is a semi-formal description of the algorithm. Local and commu-
nication part are repeated for each hyperplane the system consists of, recycling is
done whenever necessary after the local and communication part, and counting is
done after the full system was examined.

1. Initialization: Occupy the zeroth plane for busbar, if desired; for periodic
b. c., copy the first simulated plane into buffer; initialize all data structures;
etc.

2. Local :

(a) Examine the strip site by site. Do labeling.

(b) When two different global clusters join at one site, generate pairing infor-
mation for left and right neighbour, but defer communication until after
the local part.

3. Communication:

(a) Exchange borders of strip with neighbours.

(b) When two clusters of both strips join, convert clusters to global. If they
are already global, but not yet connected, generate pairing information.

(c) Exchange pairing information. Pair global labels that belong together.
During this, new pairing information can come up.

(d) Check if recycling is necessary due to tight memory conditions.

4. Recycling (if necessary):

(a) Reclassify the current hyperplane with root labels.

(b) Delete all non-root labels that point to local root labels.

(c) Reclassify the pointers to left and right of the global root labels by asking
the neighbours for the corresponding root labels.

32 Parallelizing Hoshen-Kopelman

(d) Delete all remaining non-root labels.

(e) Mark all living local root labels and delete the non-marked ones.

(f) Look for all global root labels that are not present in the current hyper-
plane and have no right neighbour; delete them and send the number of
sites to the left neighbour.

(g) When a global label is informed that its right neighbour was deleted, and
it has no left neighbour, convert it to local.

5. Counting:

(a) Count local clusters.

(b) Concentrate global clusters.

(c) Count global clusters.

(d) Look for a global cluster which has not been concentrated. If it exists,
we have connectivity. Sum up this cluster explicitly.

(e) Do output.

3.2 Other ways of parallelizing Hoshen-Kopelman

There are, as mentioned above, certainly other ways of domain decomposition. Old
work (like [FlTa92], [HMS93], [KeSt92]) did parallel cluster counting for imple-
menting Ising models with Swendsen-Wang dynamics, which cannot be compared
directly with percolation (but is of course inspirational). Teuler and Gimel [TeGi00]
did investigate percolation, but the authors did store the full lattice instead of only
one plane, which restricted them to rather small lattice sizes. In unpublished work
by MacIsaac and Jan (private communication), they tried to use a domain decom-
position in strips parallel to the hyperplane of investigation, a natural counterpart
to the decomposition chosen within this thesis. Their approach should have been
easier to implement and more efficient in execution, as communication is needed
only after the full Hoshen-Kopelman examination of the strip, and not after each
investigated hyperplane. However, world record sizes for simulations would have
been possible only in two dimensions.

Moloney and Pruessner devised a way to parallelize the Hoshen-Kopelman al-
gorithm in an asynchronous way [MoPr03], i. e. small patches of a larger lattice
are simulated independently and stored (only the border of the patch needs to be
stored, the interior is irrelevant after simulation); after enough patches have been
simulated, these are joined to form a larger lattice. This method is well suited for
low dimensions; for higher dimensions, the ratio of surface vs. volume grows and
makes this scheme inefficient, i. e. too much data have to be stored.

3.3 Results of Monte Carlo simulations

Some of the results presented here were already presented in the diploma thesis
[Tigg01]. The old results were generated using the Cray T3E of the NIC Jülich,
while new results were generated using the JUMP of NIC Jülich and the compute-
cluster Clio of the Computing Centre of the University of Cologne.

Generally, the old results were produced with open boundaries or busbar in
one direction, and periodic resp. helical boundary conditions in other directions.
The new results were done without open boundaries, using fully periodic or helical
b. c. This reduces systematic errors inevitably caused by the open boundaries (see
discussion below), but this means that twice the number of lattice sites have to be

33

stored, reducing the maximal system size that can be simulated. For comparison,
some of the new results have been generated using open b. c. in one direction,
e. g. for five dimensions.

In the rest of this chapter, old and new data will be labelled accordingly. New
data with open boundaries are marked as such; when not explicitly marked, new
data are for fully periodic b. c.

3.3.1 Cluster size distribution

We expect ns, the number of clusters of size s, to follow a power-law: ns ∝ s−τ ,
with τ , the so-called Fisher exponent (cf. [Fish67]) being a universal constant, only
depending on dimensionality. To make handling of Monte Carlo data easier, we do
not store all ns for all s, but instead we gather these data in bins: the first bin
stores n1, the second n2 + n3, the third n4 + . . . + n7, and so on. By growing these
bins exponentially, we obtain an easily to handle amount of data even for very large
simulations. Analysis of binned data is easy:

Ns =

∞∑

s′=s

ns′ =

∞∑

s′=s

(s′)−τ ≃
∫ ∞

s

(s′)−τ ds′ = s−τ+1

By plotting the summed up cluster numbers, we can easily obtain all interesting
information. When plotting the cluster size distribution in a log-log-plot, we expect
from the power-law to see a straight line with slope −τ +1. This is indeed the case,
but it is not honest to judge from such a plot that the power-law is fulfilled well, as
deviations from the law are hidden by the logarithmic scale. It is more honest to
divide the real data by the expected behaviour and to plot the results on a linear
scale (we still plot the x-axis representing s logarithmically, as our bins are growing
exponentially in size, yielding equidistant points). In such an “honest” plot we see
easily that our data are influenced by two effects: corrections to scaling for small s
and finite-size effects for large s.

In two dimensions, the value of τ is known exactly (cf. [NRS80], [Nien82],
[Nijs79], [Pear80]): τ = 187/91. All our Monte Carlo data agree well with this
value. In higher dimensions, there are no exact values known for τ , so we have
to extract them from our data. Of course, if we have to extract more values from
given data, the error margins for the values will increase. Due to this, results for
two dimensions are more precise than those for higher dimensions.

We can extrapolate the asymptotic behaviour with higher precision, when we
also take into account the corrections to scaling. By doing this (as described in the
next subsection), we not only get good estimates for τ , but we can also better guess
the error margins for τ .

For two dimensions, we find with high accuracy that our τ agrees well with the
exact τ = 187/91.

For three dimensions, we find τ = 2.190(1), which is roughly compatible with
the old literature value τ = 2.186(2) found by Jan and Stauffer in [JaSt98], and
τ = 2.189(2) from Lorenz and Ziff in [LoZi98b] (they investigated bond percolation,
but as τ is universal, their value is the same as for site percolation). Gimel et
al. took τ = 2.189 as exact when analysing their d = 3 data, instead of trying to
extract it from the data in [GND00]. Old data from [Tigg01] showed τ = 2.190(2).

In four dimensions, we find τ = 2.315(2), compatible with τ = 2.313(3) from
Paul et al. [PZS01], and τ = 2.3127(7) from Ballesteros et al. [Ball97]. Old data
from [Tigg01] showed τ = 2.313(2).

In five dimensions, we find τ = 2.41(1), in agreement with τ = 2.412(4) from
[PZS01]. [Tigg01] did not investigate d = 5.

34 Parallelizing Hoshen-Kopelman

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

 3.5e+12

 4e+12

 4.5e+12

 5e+12

 1 100 10000 1e+06 1e+08 1e+10 1e+12

N
s

sτ-
1

s

Figure 3.4: Cluster size distribution in two dimensions for L = 7 · 106, averaged
over three runs (new data, fully periodic b. c.). The error bars correspond to
minimum and maximum values of the runs (standard deviation is not a reasonable
error indicator for three samples). For large s, only few clusters occur and thus
fluctuations are strong (cf. chapter 2 for more on fluctuations). The dashed line
corresponds to the asymptotic behaviour for large clusters. The dotted line shows
corrections to scaling for small s (see below), here it corresponds to ∆1 = 0.73 and
k1 = 0.55, i. e. a correction term (1 − 0.55 · s−0.73).

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

 1 100 10000 1e+06 1e+08 1e+10

N
s

sτ-
1

s

Figure 3.5: Cluster size distribution in three dimensions for world record size L =
25024, averaged over three runs (new data, fully periodic b. c.). Error bars as
above. The dashed line corresponds to the asymptotic behaviour, the dotted line
corresponds to corrections to scaling with ∆1 = 0.65 and k1 = 0.57.

35

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

N
s

sτ-
1

s

Figure 3.6: Cluster size distribution in four dimensions for world record size
L = 1305, averaged over three runs (new data, fully periodic b. c.). Error bars
as above. The dashed line corresponds to the asymptotic behaviour, the dotted line
corresponds to corrections to scaling with ∆1 = 0.48 and k1 = 0.63.

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

N
s

sτ-
1

s

Figure 3.7: Cluster size distribution in five dimensions for world record size L = 225,
averaged over three runs (+ with error bars, new data, fully periodic b. c.), and for
one run with world record size L = 270, scaled by (225/270)5 (× without error bars,
new data, open b. c. in one direction). Error bars are determined as above. The
dashed line corresponds to the asymptotic behaviour, the dotted line corresponds
to corrections to scaling with ∆1 = 0.30 and k1 = 0.55.

36 Parallelizing Hoshen-Kopelman

3.3.2 Corrections to scaling

The behaviour ns ∝ s−τ is valid only for large s. The reason is simple: For this
scaling behaviour to be exact, we need the condition that there are no inherent
length scales, or in other words: when we renormalize our system, it should look
the same (right at the critical point); if there is an inherent length, then it will be
renormalized, too, and the system looks different.

One such length is the finite size of our system; this influence, which leads to
finite-size corrections, will be covered in a seperate section.

Another length is the lattice spacing a (in this case a = 1, as we simulate not
a real system, but an idealistic model). For small clusters, which are of size s ≃ a,
renormalization would have a great effect (for example, a 1-cluster would vanish
after renormalization); for large clusters, this effect gets smaller. A cluster, whose
linear dimension is much larger than 1, should not be affected significantly by small-
cell renormalization, or in other words: it does not “feel” the lattice spacing a = 1.

Small clusters should be heavily influenced by lattice spacing, thus we expect ns

for small s to deviate from the power-law ns ∝ s−τ .
Such deviations are expected to be non-universal, as they depend on microscopic

details: i. e. the deviations should be different for triangular and square lattice.
The expected behaviour for small, but not too small clusters is (cf. [Adle83])

ns ∝ s−τ (1 − k1s
−∆1) .

The correction term is called corrections to scaling, it could stem from an irrel-
evant operator or from a nonlinear scaling field (cf. [Ahar83], [BiSt87], [MDSS83]).
If a nonlinear scaling field was the only cause, one would expect quantitatively
∆1 = 55/91 ≃ 0.6044 in two dimensions. This simple assumption is not compatible
with Monte Carlo results.

To find good estimates for k1 and ∆1 (while we are mainly interested in ∆1), huge
lattices are very helpful, as finite-size effects make data analysis difficult (cf. fig. 3.8).

-4

-3

-2

-1

 0

 1

 2

 0 2 4 6 8 10 12 14

lo
g 1

0
(

N
s

/(
k 0

 s
1-

τ)
-

1)

log10 s

Figure 3.8: Corrections to scaling in two dimensions, L = 7 · 106 (+, averaged over
3 runs), L = 105 (×, averaged over 10 runs); both new data. Because of finite-size
effects, the distribution does not follow a straight line, but at a given size of clusters,
there are more than expected. For smaller L, this happens at smaller sizes s. The
solid line corresponds to s0.73.

37

By taking into account the corrections to scaling, we also get a better estimate
for τ . This is the case, because in the plot of the corrections to scaling we only get
a straight line (for small s) when we choose k0 and τ with high precision. Small
deviations from the correct values will bend the straight line to one direction or the
other. This is shown in fig. 3.9.

-4

-3

-2

-1

 0

 1

 2

 0 2 4 6 8 10 12 14

lo
g 1

0
(

N
s

/(
k 0

 s
1-

τ)
-

1)

log10 s

Figure 3.9: Corrections to scaling for L = 7 · 106 in two dimensions (new data). On
the y-axis is plotted the binned data divided by the asymptotic behaviour k0s

−τ .
Three values were chosen for k0: 1.5983 ·1012 (+, optimal), 1.5973 ·1012 (×, slightly
too small), and 1.5993 · 1012 (2, slightly too large). The solid line represents the
corrections to scaling power law s0.73, which is a good approximation for small s
for the chosen optimal k0 = 1.5983 · 1012.

In order to verify if our corrections to scaling are correct, we can use the same
method as for verifying the power-law for the cluster size distribution: we plot the
Ns divided by the expected behaviour, in order to see discrepancies. Figure 3.10
shows the result.

Of course, when we have to extract more parameters from our data, the error
margins will become larger. As an example, Gimel et al. have taken τ = 2.189 to be
exact in three dimensions, instead of extracting it from the data. For that reason,
they found ∆1 = 0.65(2) with high precision, which is the same as our ∆1 = 0.65(5),
but with smaller error margins; but for the mentioned reason, their error bars seem
to be overly optimistic.

The results obtained from the parallelized simulations are: in two dimensions
∆1 = 0.73(2), ruling out the simple nonlinear scaling fields assumption as the only
source for corrections to scaling [Ahar83], as this would require ∆1 = 55/91 ≃
0.6044. Another Monte Carlo value from literature is ∆1 = 0.65(5) (MacLeod and
Jan, [MLJ98]). The old result from [Tigg01] was ∆1 = 0.70(2).

In three dimensions, we find ∆1 = 0.65(5), agreeing roughly with ∆1 = 0.70(5)
found by Jan and Stauffer [JaSt98]. Gimel et al. found ∆1 = 0.65(2) [GND00], but
the error seems to be overly optimistic. Old result from [Tigg01] was ∆1 = 0.60(8).

In four dimensions, we find ∆1 = 0.48(8), old result was ∆1 = 0.5(1). In five
dimensions, we find ∆1 = 0.30(10); [Tigg01] did not investigate d = 5.

38 Parallelizing Hoshen-Kopelman

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

 1.8e+12

 2e+12

 2.2e+12

 2.4e+12

 2.6e+12

 2.8e+12

 3e+12

 3.2e+12

 1 10 100 1000 10000

N
s

s1-
τ

s

Figure 3.10: Binned cluster sizes Ns divided by expected behaviour without
corrections to scaling Ns = s−τ+1 (+), and with corrections to scaling Ns =
s−τ+1(1 − k1s

−∆1) (×). Data are averaged over three runs with L = 7 · 106 (new
data). The dashed line shows asymptotic behaviour for large clusters. Corrections
to scaling show a good approximation to the data for small cluster sizes s, with the
exception of the very smallest clusters.

3.3.3 Influence of boundary conditions on finite-size effects

A free surface (either by open boundary or by busbar) leads to modification of the
asymptotic power law ns ∝ s−τ . This can be understood in terms of renormalization
by the introduction of a new length-scale, the linear size of the system. Clusters of
that size “feel” this length.

For open boundaries, it is easy to imagine the effect of such a surface on clusters:
When a large cluster is placed near the surface, a part of it is cut off. Although the
cluster would extend beyond the surface, we stop the counting of sites and thus get
a too small cluster. We would expect an increase in ns above the power-law.

The effect should be stronger for larger than for small clusters: When we shift
around a small cluster on the lattice, it feels the influence of the surface only when
it touches the surface. In the interior of the lattice, it does not feel the surface at all.
A larger cluster does feel the surface earlier, at greater distance of its center from
the surface; there are not so many locations in the “interior” of the lattice. So we
expect that for small clusters our power-law should not be influenced by finite-size
effects (but by corrections to scaling, as explained above). The finite-size effects
should become stronger the larger the clusters get. This can be seen in the data
(cf. fig. 3.11: the ns go up for large s).

For busbar, the situation is different. Busbar means that the place above the
uppermost plane is completely occupied. We assign the label 1 to the cluster formed
by this, but we do not count the sites in the zeroth plane. This is just a trick to
determine easily connectivity between uppermost and lowermost plane: If there is
a reference to label 1 in the lowermost plane, we have connectivity.

This trick with busbar imposes peculiar finite-size effects different from open
boundaries: Busbar, too, cuts clusters, but such cut clusters at the top of the
system are joined by the zeroth plane, so they disappear and form a single, very
huge cluster. Because of this disappearance, we expect that there are not as many

39

large clusters as expected by the power-law. This can be seen very clearly in four
dimensions (cf. fig. 3.11).

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 1.1e+09

 1.2e+09

 1.3e+09

 1 10 100 1000 10000 100000 1e+06 1e+07

N
s

sτ-
1

s

Figure 3.11: Cluster size distribution in four dimensions, using Ziff’s four-tap
PRNG, L = 301 (new data). Periodic boundaries (+), open boundaries (×), and
busbar (2). Largest cluster for busbar would lie at 7.5 · 109 on the y-axis, outside
of this plot. Scale was chosen to demonstrate the behaviour for medium to large
clusters. The results here are averages over 50 runs each; error bars are statistical
error of mean, i. e. standard deviation divided by square root of number of samples
(cf. appendix C). For large clusters, the distribution of ns is no longer Gaussian
(cf. chapter 2), thus the error bars derived from standard deviation for large s are
problematic.

This makes busbar data very problematic for analysis.

Open boundaries and busbar implement free surfaces in the system. As clusters
can be placed anywhere within the volume of the lattice, but feel finite-size effects
only when they touch the surface, the effects should be proportional to surface
divided by volume, or for a Ld system: proportional to 1/L.

This makes high-dimensional systems especially suitable for studying effects of
boundary conditions: statistical fluctuations are proportional to overall system size
Ld. In two dimensions, these fluctuations dominate for small L, whereas in four
dimensions even systems with small L have many sites and thus small statistical
fluctuations.

When we want to avoid the 1/L-behaviour, we have to avoid free surfaces. This
can be done by fully periodic and/or helical boundary conditions. Even in this case
we have finite-size effects: In a system of size Ld there can be no cluster larger than
Ld. But these effects are dominated by the volume of the lattice and thus should
be proportional to 1/Ld.

But fully periodic boundary conditions are expensive for the Hoshen-Kopelman
algorithm, as we have to remember the first plane after the whole simulation and
have to connect it to the last plane; even more, we must not discard labels associated
with the first plane during recycling.

Obviously, data for finite systems are easier to analyze for fully periodic bound-
ary conditions, as the disturbing finite-size effects are less strong (but still present
for small L). But even with the lower-quality data of open boundaries, we can find

40 Parallelizing Hoshen-Kopelman

good estimates for the infinite system by plotting values for systems of different
sizes against 1/L. The intersect is the value for the infinite system.

Not only the boundary conditions, but also details like the aspect ratio of the
investigated system (i. e. width divided by height in a d = 2 system) do have an
impact on finite-size scaling. Several publications did investigate this in detail,
cf. [AcSt98], [AhSt97], [Card92], [LoZi98a], [LoZi98b], [Stau94], [Ziff96], [ZFA97],
[ZLK99].

3.3.4 Number density

The total number of clusters divided by the number of sites in the system is the so
called number density n(p). It is independent from the system size, but as it depends
on the microscopic details of the lattice, it is non-universal. Some number densities
are known exactly for bond percolation (cf. [Baxt78], [TeLi71]). Unfortunately, for
site percolation on square, cubic, and hypercubic lattices, such values have to be
found numerically.

The total number density is a sum of the densities for all cluster sizes. This can
be understood by looking at lattice animals in two dimensions (cf. [StAh94, section
2.3]): To form a 1-cluster, we need one occupied site (probability p) surrounded
by four free sites (probability 1 − p), so the probability or density of 1-clusters is
p(1− p)4. For a 2-cluster we need two occupied sites and six surrounding free sites;
but there are two different orientations for such a 2-cluster, so the corresponding
density is 2p(1−p)6. These densities multiplied by Ld are the cluster numbers from
above. But as the number of lattice animals grows exponentially with s, we can
never calculate the exact values for large bins; and of course we cannot calculate
the infinite sum to get the total number density.

Monte Carlo studies are a useful tool to get high precision estimates for the
number density. We denote the density at the critical point by nc = n(pc).

In two dimensions, our values for nc are dominated by statistical fluctuations.
This can be seen in fig. 3.12 (old data from [Tigg01]); for L = 106, seven inde-
pendent runs for each PRNG were done (in order to study the effects of random
numbers; see below). The scattering of the points at L = 106 is stronger than
the variation of points for different L. From this, we can calculate a number den-
sity in two dimensions of nc = 0.02759791(5), agreeing well with the values for
L = 3.5 · 106 and L = 4 · 106 (for larger lattices, fluctuations are significantly
smaller). A re-investigation of d = 2 with new data shows nc = 0.027597857(2),
which is compatible, but significantly more precise (due to larger system size of
L = 7 · 106, averaging over three runs, and periodic b. c.). Ziff et al. have found a
value of nc = 0.0275981(3) in [ZFA97], in agreement with the values found here.

In four dimensions, the situation is different: When using open boundaries,
finite-size effects should go with 1/L, too, but as the statistical fluctuations are
propotional to the number of sites 1/Ld, finite-size effects should dominate. This
is indeed the case, as can be seen in fig. 3.13 (× correspond to open b. c.): The
data points only slightly scatter around the regression line ∝ 1/L. From this plot,
we can extrapolate nc = 0.051998(2) (the old value nc = 0.0519980(2) reported in
[Tigg01] was overly optimistic). With new data, we get nc = 0.0519995(2), which
has higher precision due to larger L, more runs for averaging, and periodic b. c.

3.3.5 Quality of pseudo-random number generators

As can be seen in fig. 3.12, there is a problem with one of the four utilized random
number generators, the linear congruential generator ibm=ibm*16807. While the
resulting number densities from the other generators agree well within statistical
fluctuations, those from the ibm*16807 deviate visibly. This is due to correlations

41

0.027596

0.0275965

0.027597

0.0275975

0.027598

0.0275985

500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06

n c

L

Figure 3.12: Number densities for various system sizes L, various PRNGs, and
various runs with different random seeds (old data). Used PRNGs: Kirkpatrick-
Stoll (+), Ziff’s four-tap (×), ibm*16807 (2), Ziff’s six-tap (◦), ibm*1313 (△). The
solid line corresponds to the average of the L = 106 runs except the ibm*16807
ones, the dashed lines to the statistical error margins (standard error of mean).

in the produced random numbers. The ibm*16807 is known to be problematic in
literature (cf. [SHIW93, part II, chapter 1]), and here once again this is shown
clearly. The other generators (which are lagged fibonacci generators) seem to be
compatible with each other, so it is wise to choose the fastest one (cf. appendix D).

3.3.6 Speed of simulations and parallel efficiency

When parallelizing a formerly sequential algorithm, we are interested in the effi-
ciency of the result, i. e. how much faster N processors are than one processor.
This is the so-called speedup S(N) = T (1)/T (N), with T (N) runtime for N pro-
cessors; of course, this calculation is valid only if all other parameters besides N
that affect speed are kept the same. Ideally, we strive for S(N) = N , meaning that
N processors are N times faster than a single processor. In reality, this is rarely
the case; e. g. synchronization and communication between processors introduce
parallel overhead into the runtime (which would not be necessary for sequential
programs), meaning that the speedup is reduced.

In order to estimate how well a program is parallelized, we need to understand in
what parts of the parallel algorithm how much of the runtime is spent, and in what
way the processors communicate with each other. For the algorithm presented in
this chapter, we can make the following partitioning: investigating the lattice sites
is a local part (in would be done by the sequential algorithm, too); each processor
investigates its part of the hyperplane. Afterwards, exchange with neighbouring
processors is necessary, introducing parallel overhead (which would be unnecessary
for a sequential program): the boundaries are swapped in order to detect clusters
that extend over several strips, and pairing information is exchanged. Generally, the
amount of communication per processor is ∝ Ld−2 for a single hyperplane, while the
amount of local investigation is ∝ Ld−1/N per processor (number of sites per strip).
In order to obtain high parallel efficiency, we want Ld−1/N ≫ Ld−2, or in other
words, L ≫ N . Other parts of the program are recycling and counting clusters at

42 Parallelizing Hoshen-Kopelman

 0.05199

 0.052

 0.05201

 0.05202

 0.05203

 0.05204

 0.05205

 0.05206

 0.05207

 0 0.0005 0.001 0.0015 0.002

n c

1/L

Figure 3.13: Number densities for various system sizes L for d = 4, using open
b. c. in one direction (×, old data), and using fully periodic b. c. (+, new data,
averaged over three runs each; error bars correspond to minimum and maximum
of three runs). The lines correspond to the extrapolations to infinity: the dashed
line is ∝ 1/L, while the solid line is ∝ 1/L4. Thus it becomes clear that for finite
systems, fully periodic b. c. allow a more accurate estimate for number density,
while open and periodic b. c. converge for L → ∞. The leftmost data point +
corresponds to world record size L = 1305, where the finite size corrections to
L = ∞ are smaller than the statistical fluctuations (not visible at this scale); thus
large systems with fully periodic b. c. are practically “infinitely large”. We obtain
nc,periodic(L = ∞) = 0.0519995(2). For open boundaries, we can estimate the
value nc,open(L = ∞) = 0.0519980(20) by varying the line, in order to estimate
the finite-size influences. The old value reported in [Tigg01], nc,open(L = ∞) =
0.0519980(2), was overly optimistic, highlighting that estimating finite-size effects
can be problematic.

43

the end. These have both local and global components, but for correctly chosen
parameters, they should be negligible in comparison to the pure investigation of the
lattice.

Measuring parallel efficiency by instrumenting the code with timers for different
sections (local and global) is useful, but offers only limited insight. For example,
recycling is both a local and a global process; breaking it down to smallest pieces
is tedious and problematic, as timers have a finite resolution. Even more, as the
decomposed domains depend on the number of processors, we can have super-linear
speedup advantages: when the number of processors increases for a fixed problem
size (also called “strong scaling”), the domains per processor become smaller, and
thus recycling is necessary less frequently, possibly offsetting the disadvantage we
obtain from more communication, necessary because there are more processors that
need to be synchronized. Even the purely local step within a sub-domain is in-
fluenced by the parallelization, as we need to distinguish between local and global
labels, and treat these accordingly.

The only possibility to get reliable conclusion of parallel efficiency is to mea-
sure runtimes for different numbers of processors, and then to use Amdahl’s law
[Amda67] to estimate the sequential portion s of the program; cf. appendix E for
more on Amdahl’s law. Figure 3.14 shows results for d = 2, d = 3, and d = 4. From
the demanded L ≫ N we expect lower dimensions to be more efficient than higher
ones, as for smaller d we can simulate larger L, while the number of processors N is
dictated by available hardware. Nevertheless no clear trend is visible in dependence
on dimensionality. This can be explained by machine architecture: the time con-
sumption of communication depends not only on the message size, but also includes
a fixed overhead for every single message, the so-called latency. For small messages,
latency can dominate the overall time, meaning that d = 2 (with messages consist-
ing of single words) is not faster than d = 3. Another noteworthy effect on runtime
can come from the processor caches. Data structures fitting into the cache can be
accessed faster than those that need to be fetched from main memory every time.
When dividing the hyperplane of investigation over more processors, a larger part
of it can be kept in cache, giving super-linear speedup (i. e. S(N) > N , although
this seems counter-intuitive).

When measuring the program on real computers, we find a parallel portion of
0.985 from fig. 3.14, with strong scaling (i. e. the problem size is kept constant,
regardless of the number of processors). In reality, we would simulate larger lattices
when using many processors, meaning less parallel overhead in comparison to the
investigation of the lattice. Therefore, it is safe to conclude that the modified
Hoshen-Kopelman algorithm presented in this chapter is efficiently parallelized, and
is suitable for large numbers of processors.

3.4 Summary and outlook

Parallelizing the Hoshen-Kopelman algorithm by decomposing the hyperplane of
investigation into strips is an efficient method, which allows for simulating huge
lattices.

The results below are for world record simulations. Those marked with “(old)”
were generated on a Cray T3E with open b. c. in one direction and were previously
published in [Tigg01], those with “(new)” on a compute cluster with Opteron pro-
cessors and a fast interconnect, with fully periodic b. c. The entry for d = 2 marked
with “(MoPr)” is from [MoPr03] and currently sets the world record mark for d = 2,
although that paper only reports that the simulation was done, but does not present
any results for it. Therefore d = 2, L = 7 · 106 presented here is the largest pub-
lished simulation. For d = 5, a single run for L = 270 with open b. c. was done

44 Parallelizing Hoshen-Kopelman

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40

S
(N

)

N

Figure 3.14: Speedup S(N) versus number of processors N , for two-dimensional
(+), three-dimensional (×), and four-dimensional (2) percolation. The solid line
corresponds to Amdahl’s law with a parallel portion of 0.985. Total lattice size
was kept constant (strong scaling), at L = 110880 (d = 2), L = 2520 (d = 3), and
L = 360 (d = 4). Higher speedup S(N) than predicted by Amdahl’s law for small N
can be explained by super-linear speedup due to cache effects (N processors have N
times the amount of cache). The scattering of measurements is due to influences of
the operating system, which become worse for larger processor numbers, as all other
processors need to wait for a single processor that gets distracted by an operating
system task.

45

(cf. fig. 3.7), but as open b. c. introduce strong finite-size effects, it is not included
in the table below.

d L τ ∆1 nc

2 (old) 4000256 187/91 0.70(2) 0.02759791(5)
(new) 7000000 187/91 0.73(2) 0.027597857(2)
(MoPr) 22200000 187/91 unpublished unpublished

3 (old) 20224 2.190(2) 0.60(8) 0.052442(2)
(new) 25024 2.190(1) 0.65(5) 0.05243812(9)

4 (old) 1036 2.313(2) 0.5(1) 0.0519980(2)
(new) 1305 2.315(2) 0.48(8) 0.0519995(2)

5 (new) 225 2.41(1) 0.30(10) 0.0460321(2)

Although the previous world records marked by “old” are indeed rather old
(approx. two computer generations lie between these and this thesis), with the
exception for two dimensions they have not been challenged, until now. The only
challenge in two dimensions came from Moloney and Pruessner, who invented an
innovative algorithm, but they only worked in two dimensions and never above that.
It is important to note that in two dimensions, memory is not really a limit, but only
computing time. Given a fast workstation with lots of memory and several years of
computing time, it is possible to challenge the two-dimensional world record. The
reason is that we need to store only a line of investigation, L sites in size, for an
L2 system. In higher dimensions, this significant memory advantage of the Hoshen-
Kopelman algorithm shrinks to Ld−1 for an Ld system. Thus, the real challenge are
high dimensions.

The only way to simulate huge lattices for high dimensions is to choose the way
of domain decomposition presented in this chapter, as it is necessary to divide the
hyperplane of investigation. This complicates programming considerably; the fact
that the old world records for d = 3 and d = 4 have not been broken for over six
years, despite serious efforts by some scientists (e. g. MacIsaac), shows how difficult
this approach is. Hopefully, the source code presented in appendix F allows other
scientists to use this method for studying percolation on large lattices.

46 Parallelizing Hoshen-Kopelman

Chapter 4

Growing Lattices

4.1 Motivation

In the previous chapters we have seen that replication is a suitable strategy for
investigating fluctuations, while domain decomposition allows for simulating huge
lattices. In this chapter, we will modify the Hoshen-Kopelman algorithm to work
on changing domains, i. e. growing lattices.

The HK algorithm allows for examining large percolation lattices using Monte
Carlo methods, as for simulating an Ld lattice only a hyperplane of Ld−1 sites
has to be stored. The traditional way to do a simulation using the HK algorithm
is to choose an L and an occupation probability p, and then walk through the
lattice in a linear fashion, one hyperplane after the other, calculating interesting
observables (like cluster numbers) on the fly or at the end. When one is interested
in the dependence of these observables on either p or L, one has to repeat these
simulations with varying values of these parameters.

In many cases, we are interested in observables in dependence on L or p, mean-
ing that we would have to do many simulations with only slightly changing values
of these parameters. In would be nice to have algorithms which allow direct inves-
tigation, i. e. which produce results for sweeps in p or L in one run.

In 2000 Newman and Ziff published an algorithm which allows to simulate per-
colation for all 0 ≤ p ≤ 1 in one run, making it very easy to study percolation prop-
erties in dependence on p ([NeZi00], see also [FrLu00]; section 1.4.4 of this thesis
has a short description). Unfortunately, their algorithm lacks a desirable property
of the HK algorithm: they need to store the full lattice of Ld sites, whereas for HK
only memory for Ld−1 sites is needed.

A modification of the HK algorithm presented here allows to simulate percola-
tion for many 1 ≤ Li ≤ Lmax in one run, with only a small performance penalty
(depending on the number of intermediate Li which are chosen for investigation).
The important advantage of the HK algorithm, small memory consumption, is pre-
served. In three dimensions, the modified algorithm needs to store three times as
much sites as the original one (a constant factor), but this is still ∝ Ld−1, meaning
a considerable advantage for low dimensions.

This modified algorithm shall be presented in this chapter, along with simulation
results for site percolation on the cubic and the square lattice, i. e. d = 3 and d = 2.
The algorithm can be adapted to any other dimensionality.

While the changing domains make a further domain decomposition for paral-
lelization particularly difficult, it is possible to use the method of replication for
this technique, too. In fact, this is highly advisable, as runs for different random
numbers are necessary to ensure statistical independence.

47

48 Growing Lattices

4.2 Computational method

The traditional HK algorithm works by dividing the Ld lattice into L hyperplanes of
Ld−1 sites, then investigating one hyperplane after the other. One advantage of this
simple scheme is that it allows for domain decomposition and thus parallelization
(cf. chapter 3).

Another approach is to work recursively on growing lattices: first simulate a
lattice of size Ld, then advance to (L + 1)d by adding a shell with a thickness of
one site onto the old lattice. This way, when simulating an Ld

max lattice, all sub-
lattices of sizes Li < Lmax can be investigated; the investigation of intermediate
lattices takes some additional time (for counting clusters, etc.), but the time spent
on generating the full lattice minus time for investigation is the same, because the
same number of sites is generated as with the traditional approach.

4.2.1 A modified Hoshen-Kopelman algorithm

This recursive approach was chosen here. It works as follows: imagine a cube of
size L3. It has six faces, labelled A, B, C, X, Y, Z (cf. fig. 4.1). In order to increase
the size L of the cube by one, three new faces A’, B’, C’ with a thickness of one
are slapped onto the old faces A, B, C; additionally, edges AB, BC, and CA, and a
corner ABC are added, forming a full (L + 1)3 cube.

A
B

C

CA BC

C

A B

AB

ABC

Figure 4.1: Decomposition of the surface of the cubic lattice. Rear faces X, Y, and
Z are not shown. Due to the Hoshen-Kopelman algorithm, in d dimensions, only a
(d − 1)-dimensional hyperplane needs to be stored, here for the growing cube only
its surface. When going from an L-cube to an (L + 1)-cube, the surface grows. As
edges and corners have to be treated specially, they are stored separately. For an
L×L×L cube, the faces (A, B, C) are (L− 1)× (L− 1), the edges (AB, BC, CA)
(L − 1) × 1, and the corner (ABC) is 1 × 1.

Using the HK algorithm (both the original and the modified version), each newly
generated site has d old neighbours. For d = 3, we have top, left, and back neigh-
bours. For the sake of simplicity, we assume here that top and left neighbours are
within a new face A’ (resp. B’, C’), while back neighbours are in the old face A.
Due to geometry, site numbering is shifted by one: the site A’(i > 0, j > 0) has a

49

back neighbour of A(i − 1, j − 1). A’(0, j > 0) has a back neighbour CA(j − 1),
A’(i > 0, 0) has a back neighbour AB(i− 1), and A’(0, 0) has ABC. Thus edges and
the corner need to be treated specially (cf. fig. 4.2 for more clarity).

CA

A
BA

A(0,0)
AB(0)

CA(0) ABC

CA

A
B

A
’(

..,
0)

ABC
A’(0,0)A’(0,..)

A(..,..)
A’

Figure 4.2: When growing the cube from L to L + 1, the surface which needs to be
stored for the Hoshen-Kopelman algorithm, needs to grow, too. The faces of the
cube, here A, grow from (L−1)× (L−1) (A, plain font in figure) to L×L (A’, bold
italic in figure). For the largest part of A’, A’(i > 0, j > 0), the back neighbours
are sites of A, but for the inner rim of A’, A’(i = 0, j > 0) resp. A’(i > 0, j = 0),
the back neighbours are CA resp. AB. For A’(0, 0), it is ABC.

The site A’(i, j) has the left neighbour A’(i+1, j) and the top neighbour A’(i, j+
1), when we start working inwards from A’(L, L). This way, we do not need to store
A and A’, but can overwrite A with the values of A’. The same trick is used in the
original HK algorithm for storing only one hyperplane instead of two.

This way we need three faces of size (L − 1)2, three edges of L − 1 and one
corner of size 1, for a total of 3L2 − 3L + 1 sites, in order to simulate a system of
size L3. For the traditional approach, we need L2 sites, meaning one third, a fixed
factor. But we need an additional label array for both methods, so that memory
consumption does not differ drastically.

As the new approach has about the same speed and only moderately higher
memory consumption than the traditional one, it is a viable alternative.

One important thing to keep in mind is that for a single run, results for L1

and L2 > L1 are not statistically independent, e. g. results for L and L + 1 are
naturally highly correlated. This problem can be alleviated by averaging over many
runs with different random numbers, because results for different random numbers
are suitably statistically independent, as long as the used random number generator
has a sufficiently high quality.

4.2.2 Fully periodic boundary conditions

For small lattices, open boundaries would mean a strong distortion of results, in the
most cases proportional to 1/L (surface divided by volume). In order to get rid of
these influences, it is necessary to use periodic boundary conditions, i. e. sites on
an open border are connected to corresponding sites on the opposite border.

This is also possible for the modified HK algorithm. It is necessary to store not
only the front faces A, B, C, but also the rear faces X, Y, Z. When we choose to
obtain observables for an intermediate lattice size L, we connect sites on A to Z, on
B to Y, and on C to X.

When during periodicization a cluster on one face connects to the same cluster
on the opposite face, that cluster spans the whole system and wraps around, and

50 Growing Lattices

thus can be identified as the spanning (or “infinite”) cluster. When such a cluster
is detected, the system percolates. It is possible that more than one such cluster
forms; the number of different spanning clusters is counted as nsp.

Figure 4.3: A sketch of periodicization, here in two dimensions for clarity. Black
squares denote occupied sites, only one cluster is shown. The left and the right
border of the lattice are connected to each other, in order to close the system
periodically. When a specific cluster connects to itself during this process, this
cluster spans the whole system; it is identified as the spanning cluster; in principle,
more than one such cluster can form. Another way of defining an spanning cluster
were to demand that it is present in both the left and right border, without touching
itself; this would be suitable for open boundaries, as then periodicization is not
necessary.

As the label array is modified by periodicization, we need to save a copy first,
because we need the original array to continue the simulation for larger L afterwards.
After the periodicization, the modified label array contains all cluster properties;
these can be easily extracted and written out. The modified array can be discarded
afterwards.

Using this method, it is possible to use fully periodic boundary conditions for
intermediate L, although the lattice grows afterwards. Periodic b. c. mean a per-
formance penalty and a doubling of memory consumption (as six faces instead of
three need to be stored). But the same is also true of the traditional HK algorithm
for periodic b. c., were two instead of one hyperplane need to be stored, still giving
a factor of three in memory consumption.

4.2.3 Recycling of labels

Sites in the plane of investigation (for d = 3, the surface of the cube) point to labels
in the auxilliary label structure, in order to indicate to which clusters these sites
belong. Due to the way with which the HK algorithm works (both original and
modified version), lots of these labels are indirect ones, which point to other labels.
Other labels correspond to clusters that are hidden in the bulk of the lattice and
no longer touch a surface. It is possible to get rid of these labels and thus free up
precious space by using the method known as Nakinishi recycling [NaSt80].

In order to support fully periodic b. c., for each recycling all labels represented
in A, B, C, X, Y, Z, AB, BC, CA, ABC, have to be taken into account. The method
is fully analogous to that used for the traditional HK algorithm.

51

4.3 Results for three dimensions

All simulations were done using the R(471, 1586, 6988, 9689) pseudo-random number
generator (cf. appendix D and [Ziff98]). The value of pc is not known exactly
for site percolation on the cubic lattice. Here it was chosen as pc = 0.311608
[LoZi98a, Ball99]. Simulations were done for p = 0.25, 0.3, pc, 0.35, in order to
investigate behaviour below, at, and above the critical threshold. For each value
of p, 1000 runs with different random numbers were made and used for averaging.
Total required CPU time was 10000 hours on 2.2 GHz Opteron processors.

4.3.1 Cluster size distribution

As discussed above in 3.3.1, for the number ns of clusters of size s in a lattice, we
expect a distribution ns ∝ s−τ right at pc. To make analysis easier, we look at Ns,
the number of clusters with at least s sites, as we did before:

Ns =

∞∑

s′=s

ns′ ∝ s−τ+1 (4.1)

We can determine an effective τeff by numerical differentiation of the data:
−τeff + 1 = d(log ns)/d(log s), for any L we choose. As for small s corrections
to scaling and for large s finite-size effects produce deviations from the expected
power-law, τeff is not constant, cf. fig. 4.4. For large L a plateau forms and we can
determine τ = 2.1895(10); from the figure it becomes clear that larger L mean a
more precise estimate for τ , showing once more the benefit of large lattices.

 2.17

 2.175

 2.18

 2.185

 2.19

 2.195

 2.2

 100 1000 10000 100000 1e+06 1e+07 1e+08

τ e
ff

L

Figure 4.4: Effective exponent τeff determined from numerical differentiation of
cluster size distribution. + are for L = 1000, × for L = 2500, and 2 for L = 5000.
Solid line is for τ = 2.1895, dotted lines denote estimated error of ±0.001. For
smaller L, the plateau with τeff -values undisturbed by finite size effects is smaller.
Due to the corrections to scaling for small s, a minimum size of L ≃ 2500 is necessary
to estimate a reasonably precise value of τ .

When plotting Ns ∝ s−τ+1 in a log-log-plot, we would expect a straight line
with slope −τ + 1. Deviations from the power law would be hard to detect due to
the logarithmic scale, thus we plot sτ−1Ns linearly on the y-axis. By varying τ until

52 Growing Lattices

a flat plateau forms, we can confirm the previous estimate for τ = 2.1895(10). We
can clearly see in fig. 4.5 the corrections to scaling for small s, which are the same
for different L, as these are caused by the identical lattice spacing, and for large s,
which differ for various L, as these are caused by the finite system size.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

N
s

sτ-
1 L

-3

s

Figure 4.5: Binned cluster size distribution Ns for L = 50 (2), L = 500 (×), and
L = 5000 (+). By plotting Nss

τ−1L−3, all points should fall on the same line. For
small s, we can see corrections to scaling, for large s the effects of the finite system
size, even though the boundary conditions are fully periodic. For larger L, the finite
size effects occur for larger s, as expected.

For p < pc, ns drops off sharply for small s, with s slowly growing for growing
L (not plotted, as a plot would not convey useful information). The same is true
for p > pc, but there does an additional spanning cluster form (not plotted, too).

4.3.2 Number density

In subsection 3.3.4 we have studied number density n(p, L) for large lattices, while
here we can easily investigate the dependence of n on L. As all simulations for
this chapter were done using fully periodic boundary conditions, we expect finite-
size effects to be inverse proportional to the number of lattice sites in the bulk,
i. e. ∝ L−3. This is visible in fig. 4.6, which yields a value of n(p = pc, L → ∞) =
0.0524381(1), in agreement with nc = 0.05243812(9) from chapter 3.

4.3.3 Number of spanning clusters

A “spanning” cluster is a cluster that spans the whole system. When using periodic
b. c., this cluster needs to wrap around, i. e. span the whole system and then
periodically connect to itself. Such a cluster is often called “infinite”, even for finite
system sizes, as any cluster that spans the whole lattice would become infinitely
large for L → ∞; but there are also non-spanning clusters that grow ∝ LD, with
D > 0, and therefore become infinitely large for L → ∞ (cf. [JSA98], which uses
the term“effectively infinite” for these clusters). We denote the number of spanning
clusters at p = pc with nsp.

According to theory, for p < pc no spanning cluster is expected, for p = pc

about one with fractal properties (i. e. mass ∝ LD, with 0 < D < d), and for

53

 0.05243

 0.05244

 0.05245

 0.05246

 0.05247

 0.05248

 0.05249

 0.0525

 0.05251

 0.05252

 0 0.005 0.01 0.015 0.02 0.025 0.03

n

1/L

Figure 4.6: Number density n(p, L) of clusters per lattice site, plotted against 1/L.
The intercept is the value for L → ∞, n(pc,∞) = 0.0524381(1). The solid line
is ∝ L−3; finite-size effects here are bulk effects, as for periodic b. c. no open
boundaries exist in the system. Compare this figure to figure 3.13, where open
boundaries lead to finite-size effects ∝ 1/L. Although all data points are for averages
over 1000 runs, statistical fluctuations are still visible. These become smaller for
larger L, as the number density is a self-averaging property (for larger L, there are
more clusters that can be averaged).

p > pc one with bulk properties (i. e. mass ∝ Ld, with d the Euclidean dimension
of the lattice). The critical threshold pc is well-defined only for infinite lattices,
where the number of spanning clusters (when these clusters are really infinite) nsp

is exactly zero below pc and exactly one above pc. At p = pc, we expect nsp = const,
i. e. not depending on L, for d < du (du = 6 being the upper critical dimension);
for d > du, we expect nsp ∝ Ld−6, i. e. an infinite number of spanning clusters for
L → ∞, possibly depending on boundary conditions (cf. [FASC04], [Aize97]). In
this chapter, we will only investigate d = 2 and d = 3, i. e. we expect a finite number
of spanning clusters at the critical probability pc. Below pc, nsp drops sharply to
zero, above pc it goes up sharply to one. pc depends on the lattice size.

For simulations at pc, here a value of p = 0.311608 was chosen. This value is near
the true value, as can be seen in fig. 4.7, but a rather complex finite size behaviour is
visible: For a fixed value p very near to pc, the average number of spanning clusters
decays with growing system size as nsp ∝ (log L)−3/4; at first impression, one would
conclude that this value p was chosen to small. By increasing p we can investigate
this in detail, cf. fig. 4.8. In that figure, the change in p is quite small, at most
∆p = 0.9 · 10−4 from the + to the △. Exactly the same random numbers were used
for the different p-runs; because of this, some fluctuations in the data are correlated
between various p.

Basically, for small lattice sizes (i. e. L < 100), small variations in p have no
visible effect. For L = 2, nsp starts at about 0.5, but drops to about 0.2 for L = 100,
while small changes in concentration have no strong effects. For L > 1000, such
small changes alter the behaviour qualitatively: For the rather large p = 0.311700,
nsp grows rapidly (roughly linear to L) to the expected nsp = 1, it even overshoots
slightly above this value, meaning that on average more than one spanning cluster

54 Growing Lattices

forms in a single lattice. For p = 0.311660, the same behaviour is visible, but the
growth of nsp is slower. For smaller p, only for very large lattices a slight increase
is visible. Thus, finite system sizes have a very strong qualitative influence on the
critical probabilites of percolation. For a fixed p, a change in L can make a difference
between percolating and non-percolating, and the same is true for a fixed L and
slight changes in p. The latter is well known (in fact, that is how phase-transition
is defined for percolation), the former has been used for finite-size scaling. But the
interdependence of p and L has to be investigated in more detail, as it shows a
complex behaviour.

From figure 4.8 we can estimate nsp(p → pc, L → ∞) = 0.15(3). [FSC03] finds
a value of nsp(pc,∞) = 0.4, but uses different boundary conditions, which are ex-
pected to change the result. For small L, deviations from the expected constant
value are visible. These corrections could be logarithmic as shown in fig. 4.7, mean-
ing that the true value for nsp would be lower. For very small p− pc, only for huge
lattices nsp goes up to unity, as expected for p > pc. Because for this need of huge
lattices to determine if p is below or above the critical value, the method of grow-
ing lattices seems not to be well suited for determing pc; other methods, especially
Newman-Ziff, are more promising in this regard.

For p > pc, nsp is expected to be exactly equal one for infinite lattices. For
finite lattices, nsp becomes one when p is sufficiently larger than pc, or the lattice
becomes sufficiently large for a p near pc.

When keeping p constant above pc, an interesting behaviour can be seen with
varying L, with three domains: for small L, nsp is well below one, for intermediate
L, nsp is above one, and for large L, nsp is exactly one. The domain for nsp > 1 is
interesting, as theory predicts only one spanning cluster per lattice, but for finite
system size more than one can form. This can be seen in fig. 4.9, where p = 0.35 (well
above pc) and many runs up to L = 50 were averaged. The anomalous surplus of
spanning clusters decays exponentially after a certain Lmax, where Lmax depends on
∆p = p− pc, growing with decreasing ∆p. [Sen96] showed similar results, although
there p was not kept constant, but was allowed to slightly exceed pc until for a
given set of random numbers one or more spanning clusters formed. The number
of spanning clusters formed in that way was found to decline exponentially.

For p < pc, no spanning cluster forms for even small L. Only for very small
L, sometimes an spanning cluster appears. For larger p this L becomes larger (not
plotted).

4.3.4 Size of largest cluster

As mentioned above, the spanning cluster has fractal properties at p = pc, meaning
that it grows ∝ LD, with D a non-integer value. From fig. 4.10 we can extract a
value of D = 2.52(1).

For p > pc, the spanning cluster obtains bulk properties, i. e. it grows ∝ LDb

with Db = d = 3; it no longer has fractal properties (not plotted).

For p < pc, we expect the largest cluster (which does not span the whole lattice)
to grow ∝ log L (cf. [MaHe84]). This is true for p = 0.25 (fig. 4.11) and p = 0.3 (not
plotted), only slope and intercept are different. From fig. 4.11 another important
effect can be seen: although it seems natural to determine the largest cluster smax by
taking the largest cluster of all independent runs, this would mean that no averaging
happens, and thus the values of smax are not statistically independent for different
L: a large cluster in one single run would dominate the results. Thus, even here
averaging is necessary to obtain meaningful results.

55

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 10 100 1000 10000

n ∞

L

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 10 100 1000 10000

n ∞
-4

/3

L

Figure 4.7: Number nsp of spanning clusters, at p = 0.311608 ≃ pc, averaged over
1000 runs, depending on lattice size L. Right at pc we expect nsp = const, i. e. to
be independent of L. As here nsp depends on L, the value p = 0.311608 chosen for
this thesis is slightly to small; sufficiently large lattices have to be simulated in order
to see this, even when using periodic b. c. For the number of spanning clusters we
get nsp = 0.3(log10 L)−3/4.

56 Growing Lattices

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

n ∞

L

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 10 100 1000 10000

n ∞

L

Figure 4.8: Number nsp of spanning clusters, averaged over 500 runs, depending
on lattice size L, at p = 0.311610 (+), p = 0.311615 (×), p = 0.311620 (2),
p = 0.311660 (◦), p = 0.311700 (△). Data for upper and lower plot are the same,
the difference is that the lower has logarithmic x-axis, while the upper has a linear
one.

57

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 5 10 15 20 25 30 35 40 45 50

n ∞

L

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 5 10 15 20 25 30 35 40 45 50

n ∞
-1

L

Figure 4.9: Number nsp of spanning clusters (i. e. that wrap around the system)
for p = 0.35, depending on lattice size. Theory predicts that only one such cluster
forms. However, for small lattice sizes a complex finite size behaviour can be seen:
for L < 17, less than one spanning cluster forms on average, for L > 17 more
than one cluster forms, with a maximum at L = 22, afterwards nsp drops to 1
exponentially. The solid line corresponds to 1 + e−0.29(L−16.2). For this plot, 107

runs of up to L = 50 have been averaged.

58 Growing Lattices

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 1 10 100 1000 10000

s m
ax

/L
D

L

Figure 4.10: Size smax of the largest cluster (which is the spanning cluster, if it
forms), at p = pc, scaled by LD, depending on simulated lattice size. The cluster
grows ∝ LD, with a fractal dimension of D = 2.52(1). Thus, by scaling, we get a
straight line (the line visible in the plot serves as guide to the eye). For very small
lattice sizes L, corrections to scaling can be seen.

 0

 200

 400

 600

 800

 1000

 1200

 1 10 100 1000 10000

s m
ax

L

Figure 4.11: Size smax of the largest cluster, at p=0.25, depending on simulated
lattice size. + are for smax averaged over 1000 runs, × for the maximal smax

of 1000 runs, which has stronger fluctuations (as the maximum is determined by
single clusters; in fact, as no averaging is done, the results for L and L + 1 are
not statistically independent). The solid line corresponds to 300 log10(L) − 355,
the dashed line to 320 log10(L) − 180. Thus, for p < pc, the largest cluster grows
∝ log(L).

59

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 10 100 1000 10000

n ∞

L

Figure 4.12: Number of spanning clusters nsp, in three dimensions, for p = 0.25
(+), 0.3 (◦), 0.311608 ≃ pc (△), 0.3117 (×), 0.32 (2). The real value of pc seems to
be very near the literature value of 0.311608, as there no bending upwards is visible
for the L range presented here; the value p = 0.3117 is clearly too large. We can
extrapolate a value of nsp(p → pc, L → ∞) = 0.15(3).

4.4 Results for two dimensions

The algorithm was also adapted to d = 2. Simulations were done for p = 0.5,
p = 0.58, p = 0.5927464 ≃ pc [NeZi00], p = 0.60, and p = 0.65, with 1000 runs
each. Simulated system size was Lmax = 2.5 · 105. Used random number generator
was the same as for three dimensions, R(471, 1586, 6988, 9689).

For d = 2, several critical exponents are known exactly, e. g. the exponent
τ = 187/91 for the cluster size distribution ns ∝ s−τ , or the fractal dimension of the
spanning cluster at p = pc, D = 91/48. The numerical results for simulations done
at pc show these expected values, which further supports that the exact solutions are
correct, and which shows that the used random number generator has a sufficiently
high quality.

The behaviour of the number density is qualitatively the same as for three di-
mensions, only the finite-size corrections are ∝ L−2 (instead of ∝ L−3 for d = 3,
as is expected for bulk properties; compare figs. 4.6 and 4.13). The value for
n(pc, L → ∞) = 0.0275979(4) is compatible with the value nc = 0.027597857(2)
obtained in chapter 3.

For the number nsp of spanning clusters, we expect it to drop off sharply with
increasing L below pc, to increase sharply to nsp = 1 with L above pc, and to reach
a constant value for p = pc. Figure 4.14 displays the results from the simulations,
which verify our expectations. For p = pc, we get a value of nsp(pc,∞) = 0.52(1).
Here, in d = 2, nsp approaching a constant value can be seen more easily than in
d = 3, as we can simulate lattices with much larger linear dimension L.

Above pc, there is a region were nsp > 1, but the effect is weaker than in
three dimensions, in accordance with [Sen96]. While in two dimensions any cluster
which percolates both horizontally and vertically would block any other cluster from
percolating, in three dimensions several clusters could coexist which percolate in all
three dimensions. Thus nsp > 1 for d = 2 means that sometimes two clusters form
which percolate both either horizontally or vertically, but not in both directions at

60 Growing Lattices

 0.0274

 0.0276

 0.0278

 0.028

 0.0282

 0.0284

 0.0286

 0.0288

 0.029

 0.0292

 0.0294

 0.0296

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

n

1/L

Figure 4.13: Number density n(p, L) of clusters per lattice site, plotted against 1/L.
The intercept is the value for L → ∞, n(pc,∞) = nc = 0.0275979(4). The solid line
is ∝ L−2.

the same time. This is a finite-size effect, as it vanishes for growing L.

4.5 Speed of simulations

The following table shows the minimal runtimes of five runs for two- and three-
dimensional percolation, for different algorithms. Fixed L means the traditional HK
algorithm, growing L the changed algorithm presented in this chapter. Simulated
system sizes were L = 2.5 · 105 for d = 2 and L = 5 · 103 for d = 3, simulations
were done right at the critical threshold pc (values for two and three dimensions,
respectively). For the traditional HK approach, the cluster statistics are accounted
only once, after simulating the full lattice. For the growing lattices, cluster statistics
are accounted multiple times, for each Li we are interested in. For comparison,
growing lattices were simulated with only one accounting of clusters after simulating
the full lattice, for estimating the impact of multiple accountings. The times are in
seconds for 2.2 GHz Opteron processors.

d = 2 d = 3
fixed L, single accounting 2234 s 4402 s

growing L, single accounting 2194 s 4460 s
growing L, multiple accountings 2161 s 4531 s

For both two and three dimensions, the speed of the traditional and the new
approach are roughly equal. For d = 2, the new method is even faster, by 3 percent,
while for d = 3, it is slower by 3 percent. The impact of multiple cluster accountings
is marginal: for d = 3, it increases runtime by less than 2 percent, while for d = 2
it even lowers the runtime by less than 2 percent.

While we would expect both approaches to be of the same speed, as the same
number of sites Ld are investigated, using the same core part for investigating a
single site, the small variations of runtime can be explained by the machine archi-
tecture. For d = 3, growing lattices mean a small performance penalty, as up to
three times the number of sites have to be stored for the new approach to hold the

61

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 10 100 1000 10000 100000 1e+06

n ∞

L

Figure 4.14: Number of spanning clusters nsp, in two dimensions, for p = 0.5 (+),
0.58 (×), p = 0.5927464 ≃ pc (2), 0.6 (◦), 0.65 (△). p = 0.5927464 is a very good
value for pc, giving a flat line for nsp(L), with nsp(pc, L → ∞) = 0.51(2).

current plane of investigation; for L = 5000, these cannot be hold in the cache of
the processor, and must be fetched from main memory. This higher memory traffic
slows down the computation. The same is true for the multiple accountings: these
are additional computations that take up time; when this effort is small compared
to simulating the whole lattice, the performance penalty is correspondingly small.

For d = 2, the situation is more complex: the new approach is slightly faster
than the traditional one, although this seems counter-intuitive at first. Again, this
can be explained by machine architecture. While ultimately the new approach
needs to store two times as much sites for the line of investigation, it starts with
less sites for small L (as opposed to the traditional way, where always L sites have
to be stored). For small L, this line fits entirely into the cache of the processor,
meaning significantly higher speed. This offsets the performance penalty for larger
L, where the new approach means more memory traffic. The accountings also have a
small positive effect on runtime: While they mean more amount of computation, for
each accounting all labels in the plane of investigation are reclassified (afterwards
pointing directly to root labels, no longer through indirect labels); then, looking
up labels becomes faster. Even more, the label array is compacted, meaning more
labels fit into the cache.

It is probable that for higher dimensions, i. e. d > 3, the performance penalty
of the new approach grows, as up to d times the amount of sites have to be stored
for the hyperplane of investigation and generally, the hyperplane of investigation
becomes larger in comparison to overall system size (Ld−1 to Ld), meaning more
memory accesses and weakening the effects of the processor cache.

4.6 Summary and outlook

It is possible to modify the Hoshen-Kopelman algorithm in order to obtain not only
results for an Ld

max lattice in one simulation run, but also results for intermediate Li

with Li < Lmax. Compared to the original HK algorithm, there is a higher memory
consumption (a constant factor of d for storing the lattices sites) and at most a

62 Growing Lattices

small performance penalty (for d = 2, even a performance gain is possible). The
modified algorithm is very useful in order to study the dependence of percolation
properties on the lattice size.

Following results were obtained for two and three dimensions (τ and D for d = 2
are known exactly):

d = 2 d = 3
τ 187/91 2.1895(10)
nsp 0.52(1) 0.15(3)
nc 0.0275979(4) 0.0524381(1)
D 91/48 2.52(1)

Due to fully periodic boundary conditions, the size dependence of the number
density is [nc(L) − nc(∞)] ∝ L−d in d dimensions, as expected. For the number
of spanning clusters nsp, the finite-size behaviour depends delicately on the value
chosen for p, even small deviations from pc can have strong influences. Slightly
below pc, nsp decays slowly to zero for growing L, slightly above pc, nsp goes up,
even above unity for some intermediate L-values (meaning that more than one
spanning cluster forms on average), and then decays exponentially to unity. For
a p-value chosen very near the true pc, nsp reaches a fixed value 0 < nsp < 1,
confirming the theory for d < 6.

A natural next step for research would be to move away from two and three
dimensions and to adapt the algorithm to higher d. This means dissecting a d-
dimensional hypercube into (d − 1)-dimensional hyperfaces, (d − 2)-dimensional
hyperedges, and so on.

Parallelization by using domain decomposition is apparently very hard, as the
size of the domains would be changing. This would only be necessary in order to
simulate huge lattices, where the L-dependence might not be very interesting. As
several runs always need to be averaged, in order to obtain statistically independent
data, replication is always a viable parallelization strategy.

Chapter 5

Critical Behaviour of the

Ising Model

5.1 Rationale

Despite most of this thesis being occupied with percolation theory, many of the
computational methods have equivalents in other fields of statistical physics. One
of the most important models in statistical physics is the Ising Model. Even more,
there is an interesting connection between percolation and the Ising model: both
are special cases of the q-state Potts model (cf. [KaFo69]). Furthermore, both cases
have been investigated using Monte Carlo methods for a long time. Although a
computational implementation of the Ising model is quite different from percola-
tion, the method of domain decomposition for parallelization is fruitful for both.
Because of that, in this chapter a parallel implementation of the Ising model will
be presented, along with results from world record simulations.

5.2 Introduction

The Ising model is a simple model for ferromagnetism, initally suggested by W. Lenz
[Lenz20] and later investigated in detail for the one-dimensional case by E. Ising
[Isin25]. In one dimension, it shows no phase transition, but in d > 1 dimensions
there is a second-order phase transition with interesting critical bevaviour.

The Hamiltonian for an Ising magnet is in its broadest form

Ĥ = −1

2

∑

i,j

Ji,jsi,zsj,z −
∑

i

Hzsi,z

. The Ji,j are exchange integrals which describe the coupling between two spins si,
sj , and each spin can have values of s = ±1; H is an external magnetic field.

For simulations carried out here, we neglect any external field and simplify the
Hamiltonian, yielding an energy for the lattice of

E = −J
∑

〈i,j〉

sisj (5.1)

The summation is done only over nearest neighbours, i. e. only these interact
with each other. J is the coupling constant, which is J > 0 for a ferromagnet,
favouring parallel spins over anti-parallel ones (an anti-parallel pair has an energy
deficit of 2J over a parallel one). Spins are called up and down, depending on their
sign.

63

64 Critical Behaviour of the Ising Model

In d > 1 dimensions, the Ising model shows a phase transition. The low-
temperature phase is ordered, with a non-vanishing spontaneous magnetization
M =

∑

i si. The high-temperature phase is disordered, and the magnetization
without an external field vanishes, M = 0. Figure 5.1 shows the two phases, and
the system right at the phase transition (which will be the main topic of this chap-
ter).

Figure 5.1: An 100×100 lattice for different temperatures, each 1000 timesteps after
initialization (initialization is all spins up). White pixels correspond to up spins,
black pixels to down spins. Left is for T = 1

2Tc (low-temperature phase), middle
for T = Tc (exactly at the phase transition), right for T = 2Tc (high-temperature
phase). For T < Tc, an ordered phase is visible (spontaneous magnetization) with
only small fluctuations of spins. These fluctuations grow stronger with increasing
temperature. For T > Tc, the phase is strongly disordered. For T = Tc, there is
disorder (no single domain) and order (groups of parallel spins tend to form clusters;
these are self-similiar, i. e. fractal).

Although the two-dimensional Ising model was solved exactly by Onsager in
1944 [Onsa44] and much work has been done in this field over the last decades, some
questions still remain open. One is the dynamical critical behaviour, cf. figure 5.2.

When we take a lattice with initially all spins up, right at the Curie point Tc,
with J/kBTc = 1

2 ln(1+
√

2), the magnetization M decays with time as M ∝ t−β/νz,
where β = 1/8 is the exponent for the spontaneous magnetization and ν = 1 is the
exponent for the correlation length; both are known exactly.

Two main suggestions have been made for the value of z in Glauber kinetics
(explained below): one is z ≃ 2.167 asymptotically, with simple power law behaviour
([Kall84], [Stau97], [Stau99]), the other is z = 2 with logarithmic corrections to the
power law behaviour. The latter was suggested by Domany [Doma84] and later by
Swendsen [Swen99]. Lots of work has been done in order to rule out one of these
assumptions (e. g. [NiBl96], [NiBl00], [Arju03]), but with no final result.

We want to test these suggestions here using numerical data obtained by using
the supercomputer JUMP at the Research Center Jülich. We compare these with
older data.

5.3 Computational method

For both percolation and the Ising model Monte Carlo methods are used. For
percolation simple sampling is utilized: configurations are produced by occupying
sites randomly with a fixed probability, and not taking any Boltzmann factors into
account. Even more, there is no time evolution; after generating a configuration, it
is accounted.

65

0.5

1

1 10 100 1000

Figure 5.2: An 100×100 lattice for different timesteps (from left to right and top to
bottom) t = 0, 1, 10, 100, 1000, right at the critical temperature Tc. White pixels
represent spin up, black pixels spin down. The lattice is initialized with all spins
up, then the decay of magnetization is simulated. Initially isolated down spins form
larger clusters. After very long times the resulting magnetization tends towards
M = 0 (meaning same number of up and down spins). The sixth panel shows the
time-dependence of magnetization (in a log-log-plot), with black boxes marking the
data points corresponding to the five other panels. Visible are strong fluctuations
in the magnetization; these are caused by the finite (and rather small) size of the
system.

66 Critical Behaviour of the Ising Model

For the Ising model importance sampling is used: configurations with a higher
Boltzmann weight are realized with higher probability. This is achieved using the
Monte Carlo method. Starting from a configuration, a small change in it is con-
templated, e. g. flipping a single spin. The energy change ∆E caused by this is
calculated and then the spin flip is committed with a probability W that depends
on e−β∆E (here β is the inverse temperature, not to be mistaken with the exponent
β for spontaneous magnetization; unfortunately, nomenclature in physics is some-
times ambigous). Several ways of calculating this transition probability are known;
frequently used are Metropolis kinetics, WM = min(1, e−β∆E) (cf. [MRRTT53],
a groundbreaking paper which pioneered the use of Monte Carlo simulations in
physics) and Glauber kinetics WG = e−β∆E/(1 + e−β∆E) (cf. [Glau63]). The dif-
ference between these can be seen in figure 5.3. Although both obey ergodicity and
detailed balance, for non-equilibrium states the dynamic behaviour can differ; to
obtain results comparable to literature, we use Glauber kinetics here. See [LaBi05,
subsection 4.2.1] for a detailed discussion of Metropolis vs. Glauber kinetics.

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -3 -2 -1 0 1 2 3 4

W

β∆E

Figure 5.3: Transition probability W for a spin flip with associated energy change
∆E, at inverse temperature β, for Metropolis kinetics (dashed line) and Glauber
kinetics (solid line). For |β∆E| ≫ 1, WG ≃ WM.

By using the importance sampling Monte Carlo method, we count configurations
which have thermodynamically a high probability of realization, thus resulting ob-
servables are representative.

These spin flips can be interpreted as a dynamical process: spin flips in a real
lattice caused by thermal fluctuations. This is done in this chapter for simulating
the decay of magnetization right at the phase transition.

5.3.1 Parallelization

In order to simulate huge lattices for many timesteps, we need to parallelize the
program to obtain higher speed and more memory. Parallelizing the Ising model is
easier than for percolation, as it has a higher locality. Ising-spins interact only with
nearest neighbours, whereas clusters in percolation can span the entire system; when
decomposing the system into domains, a single cluster can span several domains,
being highly non-local.

67

Figure 5.4 shows a sketch of how the algorithm works: In order to determine
if a single spin should be flipped or not, the spin itself and its four neighbors (or
more generally 2d neighbours in a d-dimensional hypercubic lattice) are examined,
giving rise to the stencil operator in the figure. The number of anti-parallel spins
is counted, as this determines the energy change of the system if the spin were
flipped. Using this number as an index, we can lookup the resulting Boltzmann-
weight in a table (pre-calculated for speed reasons), and by using a random number
we determine if we flip the spin or not.

In the left half of figure 5.4 a system with open boundaries is shown. When
examing spins on the border of the lattice, we miss one or two neighbouring spins.
This problem can be solved by introducing periodic boundary conditions: When
the stencil operator reaches the border of the lattice, it is continued on the opposite
side. This way, we have no longer open borders in the system, which would seriously
influence our results.

Technically, periodic b. c. are implemented by adding buffer planes around the
lattice, and copying the results of one border (real spins) to the opposite buffer
(virtual spins), cf. the right half of figure 5.4.

Figure 5.4: Stencil operator and periodic boundary conditions. When calculating
a spin at the left border of the lattice, the stencil operator would extend one site
beyond the lattice. For implementing periodic boundary conditions, the lattice is
extended by buffer planes, and here the rightmost column (separated by a dashed
line) is copied into the left buffer column (shaded with grey). For updating to be
physically correct, it is important always to use newest values of spins, i. e. after
re-calculating a spin in the rightmost column, it needs to be copied to the buffer
column directly.

These buffer planes are the first step for parallelizing the Ising-model. By de-
composing the lattice into several domains, e. g. strips, as shown in figure 5.5, we
can distribute the lattice over several processors. The interior spins in the lattice
(i. e. not touching the border of the domains) can be calculated locally by each pro-
cessor, independently of each other. This is possible due to the high locality of the
Ising model. Only spins on the border need to know the values of the neighbouring
spins from another processor. We use the buffer planes originally introduced for the
periodic b. c. for this purpose, and copy the borders of one domain to the buffer of
the neighbouring domain using suitable MPI-calls.

5.3.2 Multi-spin coding

Each spin can be in one of two states: si = +1 or si = −1 (up or down respectively).
Storing a single spin in an entire computer word would be a waste of precious
memory, a single bit would suffice. As we want to simulate huge lattices, we store
64 spins in a single 64-bit word in memory. By putting several spins in one computer

68 Critical Behaviour of the Ising Model

Figure 5.5: Periodic boundary conditions lead naturally to domain decomposition
into strips. When dividing the lattice into N strips, we add buffer columns to each
strip. The strips are arranged in a circular fashion; the left buffer column of any
strip gets its values from the rightmost column of the left neighbour strip, and vice
versa. The difference to a sequential implementation is that copying these buffer
columns is done via message passing directives.

word, we can simulate several spins in parallel by using simple integer operations.
For example, if up spins are represented by 1 and down spins by 0 (or vice versa), we
can determine anti-parallel spins by the simple machine-instruction xor (exclusive
or). If we occupy four bits per spin, we can handle 16 spins in parallel in one 64-bit
word.

Even more, we can sum up the number of anti-parallel spins with a simple
integer-add, if we take care that the sum never overflows into a neighbouring field.
This is shown in figure 5.6. In d dimensions, on a hypercubic lattice, each spin has
2d neighbours, meaning it can have at most 2d anti-parallel neighbouring spins. For
up to d = 7, this number fits into four bits without overflow, thus by occupying four
bits per spin, we can handle 16 operations in parallel with simple integer machine-
instructions.

Unfortunately, for determining if we flip a spin or not, we have to extract the
fields from the machine-word serially, doing a table lookup for each (to determine
the Boltzmann-weight associated with a spin flip), and generating a random number
for the final decision (to flip or not to flip, that is the question). This serial part
reduces the gain of the multi-spin technique, but nearly an order of magnitude in
speed gain is possible.

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 1

0 0 1 1

Figure 5.6: Counting the number of anti-parallel spins in a machine-word in parallel.
By doing four xors and three additions, we can handle 16 spins in parallel when
using a 64-bit machine-word.

Another important factor for increasing speed is compression of spins in memory.
Instead of occupying a full word per spin, or even four bit per spin, we want to
store each spin in one bit only in main memory, and extract it to four bits just
for the calculation. This is done by decompression before and compression after

69

calculating spin flips. Decompression is achieved by shifts and a bitwise and with
suitable bit masks, compression by shifting and oring the values together; both very
efficient operations. This is shown in figure 5.7. This compression not only uses
memory in a very efficient way, but also reduces consumption of memory bandwidth
(between processor and main memory), alleviating a bottleneck of most modern
microprocessors.

A B C D

0 0 0 A

0 0 0 B

0 0 0 C

0 0 0 D

Figure 5.7: Compression is done by shifting one word by three bits, one by two, one
by one, and shifting one not at all. These shifted words are or-ed together, giving
one compressed word for four uncompressed ones. The reverse operation is achieved
by and-ing the compressed word with four different bitmasks (each has one of four
bits in the bitfield set), and then shifting the resulting words by three, two, one, or
zero positions.

By using these methods, we have a second layer of parallelization in our pro-
gram: we utilize single arithmetic and logical units (ALU) of the processor in a
parallel fashion, in an SIMD-approach (single instruction, multiple data). Com-
bining this with MIMD-parallelization (multiple instructions, multiple data) via
domain decomposition yields a very efficient algorithm.

Simulating the Ising model by manipulating several spins at once in a ma-
chine word was first invented by Friedberg and Cameron for very small lattices
(cf. [FrCa70]). Later Rebbi re-invented this method (cf. [CJR79]) and popularized
it as “multi-spin coding”. It has proven to be a very useful technique.

5.4 Simulations

Data was generated by initializing a lattice with all spins up and then doing a Monte
Carlo simulation of the Ising model with Glauber kinetics. To obtain higher speed,
multi spin coding and parallelization (via MPI) were used. Speed on one 1.7 GHz
Power4+ processor was roughly 160 million sites per second. Up to 512 processors
were used in parallel for the largest simulations.

Although the supercomputer JUMP is rather large, there are some restrictions
on the size of lattices that can be simulated. Here, L = 1.5 · 105 and L = 2 ·
106 were chosen (the old world record for the two-dimensional Ising model was
L = 106 [Link95], [Stau99]), with periodic boundary conditions. Thus finite size
effects should be negligibly small. Several independent runs were done for L =
1.5 · 105 for averaging, 50 runs each for the random number generators xn+1 =
1313 · xn mod 263 (called LCG(1313)) and the 64-bit implementation of Ziff’s four-
tap generator R(471,1586,6988,9689) (cf. appendix D and [Ziff98]). For L = 1.5 ·105

the simulations were done up to 6000 timesteps (full sweeps through the lattice). For
the larger lattices, only considerably smaller times were possible, due to restrictions
in computing time. For investigating finite-size effects, lattices with L = 5 ·104 were
simulated with LCG(16807), again averaging over 50 runs.

70 Critical Behaviour of the Ising Model

The effective exponent z can be determined from the M(t) data by numerical
differentiation: −1/8z = d(log M)/d(log t).

5.5 Results

Even when averaging M(t) over several independent runs, fluctuations are visible
when calculating the effective z(t). Thus each point in Figs. 5.8–5.11 represents
many z(t); these points were generated by dividing the data for z(1 . . .6000) into
several intervals and then doing a least squares fit in each. Each point is the central
point of the fit in the interval. The errorbars for z (not shown in the plots for
better legibility) are of the order of the symbol size for short times and grow to up
to ±0.03 for long times. The new data, especially for the large systems, allows for
a better fit of the Swendsen suggestion. The new fitted curve has a maximum at
about t ≃ 1700 (1/t ≃ 6 · 10−4).

The last point for L = 1.5 · 105, corresponding to the interval t = 3000 . . .6000,
is subject to strong fluctuations and thus doubtful. Unfortunately, this is the most
interesting data point. Nevertheless, a trend is visible: for larger times, the critical
exponent seems to go up, not down, thus being in contradiction to the Domany-
Swendsen suggestion.

This could also be due to finite-size effects: for L = 5·104, the effect of increasing
z seems to be stronger (cf. Fig. 5.11), but more simulations would be needed for
confirmation.

2.1

2.12

2.14

2.16

2.18

2.2

2.22

2.24

2.26

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

z

1/t

Figure 5.8: Monte Carlo data for the two-dimensional Ising model at the Curie
point. + are for L = 1.5 · 105 with LCG(1313) generator, averaged over 50 runs,
× for L = 1.5 · 105 with R(471,1586,6988,9689) generator, averaged over 50 runs,
2 for L = 2 · 106 with LCG(1313), ◦ for L = 2 · 106 with R(471,1586,6988,9689),
△ for L = 2 · 106 with LCG(16807), ▽ for L = 106 with LCG(16807), data by
Stauffer [Stau99] (large systems one run each). The lines represent the Swendsen

suggestion for a fit, β/
(

t
t−t0

·
(

1
2β − c

1+c·log(t−t0)

))

, with c = 0.005 and t0 = 0.6 for

the solid line (new fit parameters) and c = 0.004625 and t0 = 0.34 for the dotted
line (Swendsen’s original parameters [Swen99]).

71

2.14

2.16

2.18

2.2

2.22

2.24

2.26

2.28

0 0.005 0.01 0.015 0.02

z

1/t

Figure 5.9: Same plot as in fig. 5.8, but with expanded 1/t-axis.

2.1

2.11

2.12

2.13

2.14

2.15

2.16

2.17

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

z

1/t

Figure 5.10: Monte Carlo data for three runs with L = 2 ·106. + are for LCG(1313),
× for R(471,1586,6988,9689), 2 for LCG(16807); data is the same and the lines
represent the same fits as in figs. 5.8 and 5.9.

72 Critical Behaviour of the Ising Model

2.1

2.2

2.3

2.4

2.5

2.6

2.7

0 0.002 0.004 0.006 0.008 0.01

z

1/t

Figure 5.11: Monte Carlo data for L = 5 · 104 with LCG(16807), averaged over
50 runs (+), L = 1.5 · 105 with LCG(1313), averaged over 50 runs (×), L = 106

with R(471,1586,6988,9689), averaged over four runs (2), and L = 2 · 106 with
LCG(16807), one run (◦).

5.6 Speed of simulation and parallel efficiency

By using both parallelization via domain decomposition and via multi-spin coding,
we can achieve very high speeds for simulating the Ising-model, up to 160 million
sites per second on a Power-processor of the JUMP; with a clock frequency of 1.7
GHz, this translates to roughly ten cycles per spin. On an Opteron processor with
2.2 Ghz, speed is 90 million sites per second (25 cycles per spin).

When using a parallelized version on N processors, we are interested in the
speedup S(N) over a single processor. This speedup is often governed by Amdahl’s
law [Amda67], S(N) = 1/(s+ 1−s

N), with s signifying the purely sequential portion of
the program, and 1−s the purely parallel one. When keeping the overall lattice size
L constant, we have so-called“strong scaling”, cf. figure 5.12; when using larger L for
higher N , we have “weak scaling” (i. e. we adapt problem size to our computational
capability).

One sequential part of the program is the communication for exchanging the
border planes; as each processor needs to communicate with two neighbouring pro-
cessors, the wall clock time spent on communicating does not depend on the number
of processors, but on the amount of data that needs to be transferred (two times L
sites for decomposition into strips of L × L/N).

5.7 Summary and outlook

Although it is possible to argue that the numerical data for very long times is doubt-
ful, as the influence of fluctuations on the value of z increases, the current precision
data seems bad for the Domany-Swendsen assumption. It would be possible to
modify the fit to the data, but the trend for long times rather contradicts the value
of z = 2. It is thus safe to say that the dynamical critical exponent is z > 2 with
simple power-law behaviour, with current best estimate of z = 2.167(3).

Nevertheless, there is still work to do: the influence of various random number

73

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

S
(N

)

N

Figure 5.12: Speedup for two-dimensional Ising model, + show median value of five
runs. Solid line is Amdahl’s law with a sequential portion of s = 0.005. Total lattice
size is kept constant at L = 10080.

generators is important, in order to find one which allows precise data, but is still
fast enough for large-scale simulations: for L = 1.5 · 105, averaged over 50 runs,
Ziff’s four-tap generator produces results which differ systematically from other
generators and system sizes. This is not the case for a single run with L = 2 · 106

and four-tap generator. Data for L = 5 · 104, averaged over 25 runs, showed the
same behavior as for L = 1.5 · 105. For these lattice sizes, R(471,1586,6988,9689)
seems not to be suited well.

Furthermore, the influence of finite-size effects for long times should be investi-
gated in more detail, and the effects of fluctuations in the magnetization in general.

74 Critical Behaviour of the Ising Model

Chapter 6

Summary and Outlook

6.1 Summary

In the previous chapters, we have examined several numerical methods for investi-
gating the properties and the critical behaviour of percolation and the Ising model.
In chapter 2, replication of the traditional Hoshen-Kopelman algorithm was pre-
sented as a viable method for investigating fluctuations of cluster numbers. In
chapter 3, a parallelized version of the Hoshen-Kopelman algorithm was presented,
which uses domain decomposition of the hyperplane of investigation into strips,
therefore reducing the amount of memory that needs to be stored per processor.
This method allows for implementation on massively-parallel computers with dis-
tributed memory, which utilize message-passing. Due to the chosen method of
domain decomposition, it is possible to simulate huge lattices also for dimensions
d > 2, while other approaches to domain decomposition published in literature are
severely limited for d > 2. In chapter 4, a modification of the Hoshen-Kopelman
algorithm was presented, which allows to simulate percolation on growing lattices,
i. e. to simulate a lattice of size L1 and then extend it to size L2 > L1 without re-
investigating the whole lattice; only newly added sites have to be investigated. This
approach is very suitable for studying finite-size effects and generally all properties
in dependence on system size. Chapter 5 deals with the Ising model. A method
already used for chapter 3, i. e. domain decomposition, is also applied to this model,
together with the method of multi-spin coding. This allowed for simulating huge
lattices over many timesteps in order to investigate critical behaviour with high
accuracy.

For all simulations of percolation, follwing values for pc were chosen:

d pc

2 0.5927464
3 0.311608
4 0.196889
5 0.1407966

When investigating fluctuations in percolation, we found that the distribution of
cluster numbers ns for fixed size s is Gaussian for small s and large L. The position
of the maximum (i. e. 〈ns〉) is in compliance to the power law ns ∝ s−τ . For large
s or small L, the left-hand side of the distribution gets distorted and vanished,
while the right-hand side stays quasi-Gaussian, i. e. it fits exp(−const · sζ), with
ζ = 2 for small s, and ζ decaying for increasing s. Variance of cluster numbers
shows the same behaviour as the mean cluster numbers, with deviations for small
s, i. e. (〈n2

s〉 − 〈ns〉2)/〈ns〉 = 1 + k2s
−∆2 , with k2 = 0.25(5) and ∆2 = 1.2(2).

The skewness of the distribution grows linearly with s, while the kurtosis grows,

75

76 Summary and Outlook

but without clear power-law behaviour. Both skewness and kurtosis are no good
measures for large s, due to the strong distortion of the distributions.

By simulating huge lattices, we found (τ is the Fisher exponent, known exactly
for d = 2; ∆1 is the exponent for corrections to scaling; nc is the number density):

d L τ ∆1 nc

2 7000000 187/91 0.73(2) 0.027597857(2)
3 25024 2.190(1) 0.65(5) 0.05243812(9)
4 1305 2.315(2) 0.48(8) 0.0519995(2)
5 225 2.41(1) 0.30(10) 0.0460321(2)

Simulations for d = 3, 4, 5 are world records. Results for d = 2 are for the largest
published simulation.

By investigating growing lattices, we found (τ and nc as above; nsp is the number
of spanning clusters; D is the fractal dimension of the largest cluster, known exactly
for d = 2):

d τ nsp nc D
2 187/91 0.52(1) 0.0275979(4) 91/48
3 2.1895(10) 0.15(3) 0.0524381(1) 2.52(1)

nsp shows a delicate finite-size behaviour.
For the Ising model in two dimensions, we found with world record simulations

that the dynamical critical exponent is not z = 2 with logarithmic corrections, but
with high probability z > 2 with simple power-law behaviour, with the current best
estimate z = 2.167(3).

This thesis has shown, like many other works in the recent years, that super-
computing is a valuable tool for physics, giving rise to the branch of computational
physics, sometimes considered to be the third branch after experimental and the-
oretical physics. Due to ever increasing computer power, problems can now be
investigated with numerical methods, which seemed to be completely inaccessible
only one or few decades ago. Although purely analytical solutions are preferable to
numerical work, it is now possible to decide questions that cannot be answered by
paper and pencil alone.

Modern supercomputers are always massively-parallel; in order to use these ef-
ficiently, it is necessary to choose parallel approaches. Two very different meth-
ods have been demonstrated in this thesis: replication and domain decomposition.
While domain decomposition is regarded to be the real thing and replication is gen-
erally frowned upon (some even call it “poor man’s parallelization”), replication can
be good science, too, and is suited very well for many problems. Domain decom-
position enables us to simulate huge lattices, proved by world records obtained for
this thesis.

6.2 Outlook

The source code for all simulation programs used in this thesis is published in the
appendix F, has already been published in the diploma thesis [Tigg01], or is readily
available in literature (see also remarks in appendix F). Hopefully, other scientists
can use and extend these programs in order to further investigate percolation and
the Ising model.

There are still lots of improvements possible: the program for parallelized Hoshen-
Kopelman could be extended to higher dimensions, or refined to investigate more
quantities. The program for percolation on growing lattices could be extended to
higher dimensions, suitable for studying the number of spanning clusters around the
upper critical dimension, where qualitative changes are expected. The parallelized

77

program for the Ising model could be used to study the power-law corrections for z
in more detail and to estimate a more precise value for z. It could also be used to
study other quantities.

Both the field of percolation and the Ising model have still many questions left
open. This thesis provides numerical methods that can be used to further investigate
these open questions.

78 Summary and Outlook

Appendices

79

Appendix A

Acknowledgements

First and foremost I would like to thank Prof. Stauffer for taking up with my slack-
ing, but finally forcing me to finish. Also helpful in this regard was Prof. Lang of the
Computing Centre of the University of Cologne. In agreement with hydrodynamics,
increasing pressure makes the work flow faster; even reaching a state of turbulence
fits into this picture.

During the pursuit of this thesis, several scientist have provided valuable input;
to name but a few, Prof. Ziff, Prof. MacIsaac, Prof. Swendsen, and others, whose
names I do not recall. Doing science in an intellectual vacuum is impossible: input
by others, either directly or by papers, makes progress possible. Thus, I would like
to thank especially Prof. Stauffer for his invaluable advice.

Computing time was kindly provided by NIC of FZ Jülich on their Cray T3E and
IBM Regatta JUMP, and by the Computing Centre of the University of Cologne on
their compute cluster Clio. Obviously, without the support of these Centres, this
thesis would have been impossible.

81

82 Acknowledgements

Appendix B

Bibliography

[AcSt98] M. Acharyya, D. Stauffer, Effects of boundary conditions on the

critical spanning probability, Int. J. Mod. Phys. C 9, 643 (1998).

[Adle83] J. Adler, M. Moshe, V. Privman, Corrections to scaling for percola-

tion, in: [DZJ83], pp. 397–423.

[Ahar83] A. Aharony, M. E. Fisher, Nonlinear scaling fields and corrections to

scaling near criticality, Phys. Rev. B 27, 4394 (1983).

[AhSt97] A. Aharony, D. Stauffer, Test of universal finite-size scaling in two-

dimensional site percolation, J. Phys. A 30, L301 (1997).

[Aize97] M. Aizenmann, On the number of incipient spanning clusters,
Nucl. Phys. B 485, 551 (1997).

[Amda67] G. Amdahl, Validity of the Single Processor Approach to Achieving

Large-Scale Computing Capabilities, AFIPS Conference Proceedings 30, 483
(1967).

[Arju03] M. Arjunwadkar, M. Fasnacht, J. B. Kadane, R. H. Swendsen,
A Bayesian analysis of Monte Carlo correlation times for the tow-dimensional

Ising model, Physica A 323, 487 (2003).

[Ball97] H. G. Ballesteros, L. A. Fernández, V. Mart́ın-Mayor, A. Muñoz

Sudupe, G. Parisi, J. J. Ruis-Lorenzo, Measures of critical exponents in

the four-dimensional site percolation, Phys. Lett. B 400, 346 (1997).

[Ball99] H. G. Ballesteros, L. A. Fernández, V. Mart́ın-Mayor, A. Muñoz

Sudupe, G. Parisi, J. J. Ruis-Lorenzo, Scaling corrections: site percolation

and Ising model in three dimensions, J. Phys. A 32, 1 (1999).

[Baxt78] R. J. Baxter, H. N. V. Temperley, S. E. Ashley, Triangular Potts

model at its transition temperature, and related models, Proc. R. Soc. London
A 358, 535 (1978).

[BiSt87] K. Binder, D. Stauffer, Monte Carlo Studies of “Random”Systems, in:
K. Binder (Ed.), Applications of the Monte Carlo Method, 2nd ed. (Springer,
Heidelberg, 1987), pp. 241–275.

[BrHa57] S. R. Broadbent, J. M. Hammersley, Percolation Processes. Crystals

and mazes, Proc. Cambridge Philos. Soc. 53, 629 (1957).

[Broa54] S. R. Broadbent, Discussion on symposium on Monte Carlo methods,
J. Roy. Statist. Soc. B 16, 68 (1954).

83

84 Bibliography

[Bru67] S. G. Brush, History of the Lenz-Ising model, Rev. Mod. Phys. 39, 883
(1967).

[Bund91] A. Bunde, S. Havlin (Eds.), Fractals and Disordered Systems,
(Springer, Heidelberg, 1991).

[Bund99] A. Bunde, S. Havlin (Eds.), Proceedings of the International Confer-

ence on Percolation and Disordered Systems: Theory and Applications, Phys-
ica A 266 (1999).

[Card92] J. L. Cardy, Critical percolation in finite geometries, J. Phys. A 25,
L201 (1992).

[CJR79] M. Creutz, L. Jacobs, C. Rebbi, Experiments with a gauge-invariant

Ising system, Phys. Rev. Lett. 42, 1390 (1979).

[CSS79] A. Coniglio, H. E. Stanley, D. Stauffer, Fluctuations in the number

of percolation clusters, J. Phys. A 12, L323 (1979).

[Doma84] E. Domany, Exact results for two- and three-dimensional Ising and

Potts models, Phys. Rev. Lett. 52, 871 (1984).

[DZJ83] G. Deutscher, R. Zallen, J. Adler, Percolation structure and pro-

cesses, Annals of the Israel Physical Society 5, (Adam Hilger, Bristol, 1983).

[FASC04] S. Fortunato, A. Aharony, A. Coniglio, D. Stauffer, Num-

ber of spanning clusters at the high-dimensional percolation thresholds,
Phys. Rev. E 70, 056116 (2004).

[Fish67] M. E. Fisher, The theory of condensation and the critical point,
Physics 3, 255 (1967).

[Flor41] P. J. Flory, Molecular Size Distribution in Three Dimensional Polymers.

I. Gelation, pp. 3083–3090, II. Trifunctional Branching Units, pp. 3091–3096,
III. Tetrafunctional Branching Units, pp. 3096–3100, J. Am. Chem. Soc. 63

(1941).

[FLR99] J. E. de Freitas, L. S. Lucena, S. Roux, Percolation as a dynamical

phenomenon, Physica A 266, 81 (1999).

[FlTa92] M. Flanigan, P. Tamayo, A Parallel Cluster Labeling Method for

Monte Carlo Dynamics, Int. J. Mod. Phys. C 3, 1235 (1992).

[FlTa95] M. Flanigan, P. Tamayo, Parallel cluster labeling for large-scale Monte

Carlo simulations, Physica A 215, 461 (1995).

[FrCa70] R. Friedberg, J. E. Cameron, Test of the Monte Carlo method: Fast

simulation of a small Ising lattice, J. Chem. Phys. 52, 6049 (1970).

[FrLu00] J. E. de Freitas, L. S. Lucena, Equivalence between the

FLR time dependent percolation model and the Newman-Ziff algorithm,
Int. J. Mod. Phys. C 11, 1581 (2000).

[FSC03] S. Fortunato, D. Stauffer, A. Coniglio, Percolation in high dimen-

sions is not understood, Physica A 334, 307 (2003).

[Glau63] R. J. Glauber, Time-dependent statistics of the Ising model,
J. Math. Phys. 4, 294 (1963).

85

[GND00] J.-C. Gimel, T. Nicolai, D. Durand, Size distribution of percolating

clusters on cubic lattices, J. Phys. A 33, 7687 (2000).

[Gras03] P. Grassberger, Critical percolation in high dimensions,
Phys. Rev. E 67, 036101 (2003).

[Grim99] G. R. Grimmett, Percolation, 2nd ed., (Spring, Berlin, 1999).

[Grim00] G. R. Grimmett, Percolation, in: J.-P. Pier (ed.), Development of

Mathematics 1950–2000, (Birkhäuser, Basel, 2000), pp. 547–575.

[Grop95] U. Gropengießer, Numerical Methods for the Determination of the

Properties of Phase Transitions and Ground States of Ising and Ising Spin

Glass Systems, Inaugural-Dissertation, Universität zu Köln, 1995.

[Gutb99] F. Gutbrod, New trends in pseudo-random number generation, in:
D. Stauffer (Ed.), Annual Reviews of Computational Physics VI (World
Scientific, Singapore, 1999), pp. 203–257.

[HaHa64] J. M. Hammersley, D. C. Handscomb, Monte Carlo Methods,
(Methuen, London, 1964).

[Hamm57a] J. M. Hammersley, Percolation Processes. The connectivity constant,
Proc. Cambridge Philos. Soc. 53, 642 (1957).

[Hamm57b] J. M. Hammersley, Percolation Processes. Lower bounds for the crit-

ical probability, Ann. Math. Statist. 28, 790 (1957).

[Hamm83] J. M. Hammersley, Origins of percolation theory, in: [DZJ83], pp. 47–
57.

[HMS93] R. Hackl, H.-G. Matuttis, J. M. Singer, T. Husslein,
I. Morgenstern, Parallelization of the 2D Swendsen-Wang Algorithm,
Int. J. Mod. Phys. C 4, 1117 (1993).

[HoKo76] J. Hoshen, R. Kopelman, Percolation and cluster distribution. I.

Cluster multiple labeling technique and critical concentration algorithm,
Phys. Rev. B 14, 3438 (1976).

[Isin25] E. Ising, Beitrag zur Theorie des Ferromagnetismus, Zeitschr. f. Phy-
sik 31, 253 (1925).

[JaSt98] N. Jan, D. Stauffer, Random Site Percolation in Three Dimensions,
Int. J. Mod. Phys. C 9, 341 (1998).

[JSA98] N. Jan, D. Stauffer, A. Aharony, An infinite number of effectively

infinite clusters in critical percolation, J. Stat. Phys. 92, 325 (1998).

[KaFo69] P. W. Kasteleyn, C. M. Fortuin, Phase transitions in lattice systems

with random local properties, J. Phys. Soc. Japan Suppl. 26, 11 (1969).

[Kall84] C. Kalle, Vectorised dynamic Monte Carlo renormalization group for the

Ising model, J. Phys. A 17, L801 (1984).

[Kest90] H. Kesten, Asymptotics in high dimensions for percolation, in:
G. R. Grimmett, D. J. A. Walsh, Disorder in physical systems, (Clarendon
Press, Oxford, 1990), pp. 219–240.

[KeSt92] J. Kertész, D. Stauffer, Swendsen-Wang Dynamics of Large 2D Crit-

ical Ising Models, Int. J. Mod. Phys. C 3, 1275 (1992).

86 Bibliography

[KiSt81] S. Kirkpatrick, E. P. Stoll, J. Comput. Phys. 40, 517 (1981).

[KrWa41] H. A. Kramers, G. H. Wannier, Statistics of the two-dimensional

ferromagnet. Part I, Phys. Rev. 60, 252 (1941).

[LaBi05] D. P. Landau, K. Binder, A guide to simulations in statistical physics,

2nd ed., (Cambridge University Press, Cambridge, 2005).

[Lea76a] P. L. Leath, Cluster size and boundary distribution near percolation

threshold, Phys. Rev. B 14, 5046 (1976).

[Lea76b] P. L. Leath, Cluster shape and critical exponents near Percolation

Threshold, Phys. Rev. Lett. 36, 921 (1976).

[Lenz20] W. Lenz, Beitrag zum Verständnis der magnetischen Eigenschaften in

festen Körpern, Phys. Zeitschr. 21, 613 (1920).

[Link95] A. Linke, D. W. Heermann, P. Altevogt, M. Siegert, Large-scale

simulation of the two-dimensional kinetic Ising model, Physica A 222, 205
(1995).

[LoZi98a] C. D. Lorenz, R. M. Ziff, Universality of the excess number of clus-

ters and the crossing probability function in three-dimensional percolation,
J. Phys. A 31, 8147 (1998).

[LoZi98b] C. D. Lorenz, R. M. Ziff, Precise determination of the bond percolati-

on thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices,
Phys. Rev. E 57, 230 (1998).

[MaHe84] A. Margolina, H. J. Herrmann, On finite-size scaling of the order

parameter in percolation, Phys. Lett. A 104, 295 (1984).

[Mart90] J. L. Martin, The impact of large-scale computing on lattice statistics,
J. Stat. Phys. 58, 749 (1990).

[MDSS83] A. Margolina, Z. Djordjevic, H. E. Stanley, D. Stauffer, Cor-

rections to scaling for branched polymers and gels, Phys. Rev. B 28, 1652
(1983).

[Mert90] S. Mertens, Lattice animals: A fast enumeration algorithm and new

perimeter polynomials, J. Stat. Phys. 58, 1095 (1990).

[MeLa92] S. Mertens, M. E. Lautenbacher, Counting lattice animals – a par-

allel attack, J. Stat. Phys. 66, 669 (1992).

[MLJ98] S. MacLeod, N. Jan, Large Lattice Simulation of Random Site Perco-

lation, Int. J. Mod. Phys. C 9, 289 (1998).

[MoPr03] N. R. Moloney, G. Pruessner, Asynchronously Parallelized Percola-

tion on Distributed Machines, Phys. Rev. E 67 037701 (2003).

[MRRTT53] N. Metropolis, A. W. Rosenbluth, M .N .Rosenbluth,
A. H. Teller, E. Teller, Equation of state calculations by fast computing

machines, J. Chem. Phys. 21, 1087 (1953).

[NaSt80] H. Nakanishi, H. E. Stanley, Scaling studies of percolation phenomena

in systems of dimensionality two to seven: Cluster numbers, Phys. Rev. B 22,
2466 (1980).

87

[NeZi00] M. E. J. Newman, R. M. Ziff, Efficient Monte Carlo algorithm and

high-precision results for percolation, Phys. Rev. Lett. 85, 4104 (2000).

[NiBl96] M. P. Nightingale, H. W. J. Blöte, Dynamic exponent of the two-

dimensional Ising model and Monte Carlo computation of the subdominant

eigenvalue of the stochastic matrix, Phys. Rev. Lett. 76, 4548 (1996).

[NiBl00] M. P. Nightingale, H. W. J. Blöte, Monte Carlo computation of cor-

relation times of independent relaxation modes at criticality, Phys. Rev. B 62,
1089 (2000).

[Nien82] B. Nienhuis, Analytical solution of the two leading exponents of the dilute

Potts model, J. Phys. A 15, 199 (1982).

[Nijs79] M. P. M. den Nijs, A relation between the temperature exponents of the

eight-vertex and q-state Potts model, J. Phys. A 12, 1857 (1979).

[NRS80] B. Nienhuis, E. K. Riedel, M. Schick, Magnetic exponents of the

two-dimensional q-state Potts model, J. Phys. A 13, L189 (1980).

[Onsa44] L. Onsager, Crystal statistics. I. A two-dimensional model with an

order-disorder transition, Phys. Rev. 65, 117 (1944).

[Pear80] R. P. Pearson, Conjecture for the extended Potts model magnetic ei-

genvalue, Phys. Rev. B 22, 2579 (1980).

[PTVF92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flan-

nery, Numerical recipes in Fortran, 2nd ed., (Cambridge University Press,
Cambridge, 1992).

[PZS01] G. Paul, R. M. Ziff, H. E. Stanley, Precolation threshold, Fisher expo-

nent, and shortest path exponent for four and five dimensions, Phys. Rev. E 64,
026115 (2001).

[Sahi94] M. Sahimi, Applications of Percolation Theory, (Taylor & Francis, Lon-
don, 1994).

[SAHM99] H. E. Stanley, J. S. Andrade Jr., S. Havlin, H. A. Makse, B. Su-

ki, Percolation phenomena: a broad-brush introduction with some recent ap-

plications to porous media, liquid water, and city growth, in: [Bund99], pp.
5–16.

[Sen96] P. Sen, Non-uniqueness of spanning clusters in two to five dimensions,
Int. J. Mod. Phys. C 7, 603 (1996).

[Sen97] P. Sen, Probability distribution and sizes of spanning clusters at the per-

colation thresholds, Int. J. Mod. Phys. C 8, 229 (1997).

[SHIW93] D. Stauffer, F. W. Hehl, N. Ito, V. Winkelmann, J. G. Zabo-

litzky, Computer Simulation and Computer Algebra, 3rd ed., (Springer, Hei-
delberg, 1993).

[StAh94] D. Stauffer, A. Aharony, Introduction to Percolation Theory, (Taylor
& Francis, London, 1994).

[Stau75] D. Stauffer, Violation of dynamical scaling for randomly dilute Ising

ferromagnets near percolation threshold, Phys. Rev. Lett. 35, 394 (1975).

[Stau79] D. Stauffer, Scaling theory of percolation clusters, Phys. Reports 54, 1
(1979).

88 Bibliography

[Stau94] D. Stauffer, Finite-size effect in seven-dimensional percolation, Physi-
ca A 210, 317 (1994).

[Stau97] D. Stauffer, Relaxation of Ising models near and away from criticality,
Physica A 244, 344 (1997).

[Stau99] D. Stauffer, Test of Domany-Swendsen hyporthesis for 2d kinetic Ising

model, Int. J. Mod. Phys. C 10, 931 (1999).

[Stau00] D. Stauffer, World records in the size of simulated Ising models,
Braz. J. Phys. 30, 787 (2000).

[Swen99] R. H. Swendsen, conference talk at “Monte Carlo and Structure Op-
timization Methods for Biology, Chemistry, and Physics”, Tallahassee (1999);
and private communication.

[Syke86] M. F. Sykes, Generating functions for connected embeddings in a lattice,
J. Phys. A 19, 1007–1025, 1027–1032, 2425–2429, 2431–2438, 3407–3414 (co-
authored by M. K. Wilkinson) (1986).

[Tama93] P. Tamayo, Magnetization relaxation to equilibrium on large 2D

Swendsen-Wang Ising models, Physica A 201, 543 (1993).

[Taus65] R. C. Tausworthe, Math. Comput. 19, 201 (1965).

[TeGi00] J. M. Teuler, J.-C. Gimel, A direct parallel implementation

of the Hoshen-Kopelman algorithm for distributed memory architectures,
Comp. Phys. Comm. 130, 118 (2000).

[TeLi71] H. N. V. Temperley, E. H. Lieb, Relations between the ‘percolati-

on’ and ‘colouring’ problem and other graph-theoretical problems associated

with regular planar lattices: some exact results for the ‘percolation’ problem,
Proc. R. Soc. London A 322, 251 (1971).

[Tigg01] D. Tiggemann, Simulation of percolation on parallel computers, Diploma
thesis, Institute for Theoretical Physics, University of Cologne (2001).

[TiSt01] A. Ticona, D. Stauffer, Percolation cluster numbers in seven dimensi-

ons, Physica A 290, 1 (2001).

[ZFA97] R. M. Ziff, S. R. Finch, V. S. Adamchik, Universality of finite-size

corrections to the number of critical percolation clusters, Phys. Rev. Lett. 79,
3447 (1997).

[Ziff96] R. M. Ziff, Effective boundary extrapolation length to account for finite-

size effects in the percolation crossing function, Phys. Rev. E 54, 2547 (1996).

[Ziff98] R. M. Ziff, Four-tap shift-register-sequence random-number generators,
Comput. in Phys. 12, 385 (1998).

[ZLK99] R. M. Ziff, C. D. Lorenz, P. Kleban, Shape-dependent universality

in percolation, in: [Bund99], pp. 17–26.

Appendix C

Typical errors in Monte

Carlo data

When analysing Monte Carlo data, it is important to keep in mind that the results
are influenced by several types of errors, namely:

• Statistical errors: Due to the stochastic nature of Monte Carlo methods,
there are deviations from the “theoretically exact” values. These are com-
pletely normal. We can find out about these errors by doing many runs with
different random numbers and then averaging over these generated values yi,
yielding ȳ as a good estimate for the value without statistical errors; the stan-
dard deviation σ =

√

1/(N − 1)
∑

(xi − x̄)2 is a measure for the typical error

of a single value yi, while ∆y = σ/
√

N is called the statistical error of ȳ and
gives an estimate, how strong ȳ would change, if we added another statistically
independent value yi; i. e. it is the error of the mean. The larger the system is,
the smaller the fluctuations become. This makes simulations of huge lattices
reasonable; even if we can do only few runs or even only a single run of that
size, obtained values have high precision.

We can estimate a probable statistical error by simulating smaller systems
and extrapolating the errors to larger sizes. In many cases we will find that
other sources of errors have greater influence than the statistical error.

• Finite-size errors: As all computers known to mankind have only finite
memory and computing speed, we can only simulate finite systems. Such finite
systems can show rather different behaviour than idealized infinite systems,
especially if the systems are very small.

Although these finite-size corrections can be very interesting in their own right
(sometimes an infinite system is easier to handle with analytical methods
than a finite system, but corresponding finite systems show a more complex
and interesting behaviour), for studying percolation we are interested in the
behaviour of an infinite system. We can simulate finite systems of different
sizes and extrapolate to infinity; but such extrapolations have to be done with
caution. It is a good idea to try to estimate the finite size correction with other
means, for example to compare the theoretically expected behaviour with the
real one.

When simulating large systems, finite-size corrections should become small.
It is often very expensive to extrapolate the finite-size corrections to high
precision, as this requires simulating lattices of various, very large sizes. A

89

90 Typical errors in Monte Carlo data

rough estimate should be enough for many purposes, to find out which type
of error is the most important one.

• Systematic errors: These are the most problematic ones and they are very
hard to deal with. Systematic errors arise when we do the simulations dif-
ferently than we really would like to do them, and in a systematic fashion.
In some sort of sense, finite-size effects are also systematic errors: we try to
obtain properties of infinite systems, but examine only finite ones. But as
finite-size errors are easy to understand and rather easy to deal with, they
have their own category.

The most classical source of systematic errors stems from bugs in the program
code. This is not the only reason why programs should be thoroughly tested
after they were written.

Another common source of systematic errors in Monte Carlo simulations are
the pseudo-random number generators (PRNGs). In many cases, they are not
as “random” as they should be. They can show short-length correlations (if
one site is determined to be occupied, the next one has a higher probability to
be occupied, too, thus favouring large clusters), long-range correlations (after
N ≫ 1 random numbers, the sequence is simply reproduced, thus reducing
effective system size), or medium-range correlations (every Nth site has an
above-average probability to be occupied; when lattice size L is approx. N ,
unwanted structures are formed).

In practice, all PRNGs show correlations of these kinds, but to a different
degree. Choosing the right one depends on many factors: for example, the
quality of random numbers depends also on lattice size (due to medium-range
correlations). To make matters worse, some PRNGs are good, but very slow.
In general, for small systems the most PRNGs are suitable, but for large
systems, correlations can show devastating effects.

It is sometimes helpful to use a “voting method”: do the same simulation with
different PRNGs and look if they all agree; if one significantly differs from the
others, it is bad. This requires several runs and is thus not suitable for huge
lattices. Unfortunately, especially huge systems show problems with random
numbers.

Systematic errors are so difficult to handle because they are hard to detect.
They cannot simply be averaged out by doing several runs. There are many
sources for systematic errors: in general, whenever we simplify a realistic
systems in order to make it suitable for simulation, we generate systematic
errors.

It is important not to be overly optimistic and not to claim small error mar-
gins for a value, just because the statistical error is small: careful search for
systematic errors is necessary, for example by testing data against theoreti-
cal assumptions, by comparing with exact data where possible, or by other
methods.

Appendix D

Pseudo-random number

generators

When doing Monte Carlo simulations, we need random numbers, but not “really”
random ones. When we change small details in our programs and want to check if
we have introduced errors in the code, we want to be able to reproduce a simulation
exactly; in that case, we need exactly the same sequence of random numbers. To
achieve this, we do not use real random numbers, but pseudo-random numbers.
An overview over generating pseudo-random numbers in general can be found in
[Gutb99].

D.1 Linear congruential generators

The simplest method of producing a sequence of pseudo-random numbers is a rule
xn = M ·xn−1 mod c. For implementation on computers, we use a c of 231 or 263, in
this case xn is just a 32-bit or 64-bit signed integer, and the integer multiplication
itself cuts off the leading bits. Choosing the right multiplier M is essential: Well
known values are 65539, 16807 = 75, or 1313 for 64-bit integers only. Of course, M
must be odd, otherwise we would receive only zeros for xn after a short time.

These generators are known to be problematic (cf. [SHIW93, part II, chapter
1]), and in this thesis, they showed wrong behaviour, too (cf. section 3.3.4). But
they are easy to implement and fast.

D.2 Lagged Fibonacci generators

When we use two or more pseudo-random numbers and combine them to a new one,
it should be random, too. This is the principle of LFGs. We do not combine the last
two numbers to form the next one, because this would mean to introduce strong
correlations; instead, we use large taps between the numbers that we combine.
There are several ways of combining the numbers, i. e. adding or multiplying, but
the standard method is to use the bitwise exclusive-or operation. An overview over
different LFGs (also called shift-register-sequence random-number generators) can
be found in [Ziff98].

We can produce large numbers of different LFGs by choosing different amounts
of the numbers that we combine and by different taps within the sequence for the
numbers. A well-known standard LFG is the one named after Kirkpatrick and Stoll
(cf. [KiSt81]), despite the fact that mathematicians prefer to call it after Tausworthe
(cf. [Taus65]). It combines two numbers and chooses them with taps 103 and 250

91

92 Random number generators

(xn = xn−103 ⊕ xn−250), which accounts for the third name: R(103,250). This
generator is known to have weaknesses due to its three-point correlations, but for
large-scale percolation, such problems did not occur. Nevertheless, mostly higher-
quality generators were used, in order to be on the safe side (there is no much use in
simulating larger systems, if the results become worse due to bad random numbers).

Generators with higher quality can be obtained using more and/or larger taps.
Two of them were used within this thesis: Ziff’s four-tap R(471,1586,6988,9689)
and Ziff’s six-tap R(18,36,37,71,89,124). Both are slower than Kirkpatrick-Stoll,
and their better quality did not show up significantly in the simulations carried
out here (for other applications, this can differ drastically; cf. [Ziff98] for a list of
such applications). Interestingly, for the Ising model (with world record sizes), the
multi-tap generators showed worse results than the rather primitive LCGs, proving
once more that choosing the right PRNG for Monte Carlo simulations is more a
black art than an exact science.

One problem with LFG still remains: in order to use a LFG which largest tap
is n, we first have to produce n random numbers through other means, before we
can use the LFG-rule. We can use a LCG to determine the initial values bit by bit,
but then we have to do a relaxation on these random numbers: we produce some
thousand of them by the LFG-rule without using them, only after this warm-up we
start using the random numbers.

D.3 Hashing generators

Hashing generators differ from conventional PRNGs in that they do not produce a
sequence of random numbers after being initalized with a seed value, but instead
produce a single random number from a single seed. This way, it is possible to
generate a random number based on the number of a lattice site and a time index
(or any other modifier). This is a very desirable advantage, as the produced order
of random numbers is not dependent on domain decomposition, if the sites in the
lattice are labeled in a globally consistent way. No matter how the lattice is par-
titioned over processors, the random number produced for every site is the same.
Thus runs with different number of processors should produce the same result. If
not, there is a bug in the program—unless we use floating point numbers, which
are not real real numbers, as operations on these are neither associative nor com-
mutative; changing the order of summation of floating point numbers can change
the results, without any bugs in the program.

When using traditional PRNGs that produce sequences of random numbers, the
domain decomposition dictates in what order the random numbers are distributed
over the lattice sites. It is not possible to produce the same distribution of random
numbers for N1 and N2 processors, unless we utilize N1N2 PRNGs and assign these
to fittingly decomposed domains. Generally, only Ni processors are usable, with Ni

divisors of N , the total number of pre-planned domains. This reduces versatility.
While it would be possible to use traditional PRNGs in the same way, i. e. use the

lattice site number as seed for the sequence and then producing only a single num-
ber, these numbers would be strongly correlated for neighbours, when using linear
congruential generators. These correlations would strongly disturb physical effects;
even much weaker correlations can have very negative influence on simulations.
Lagged fibonacci generators probably would not show these strong correlations, but
as they are expensive to set up, their use in this way is prohibitive.

The advantage of hashing generators is due to the strong non-linearity of the
hashing function; for neighbouring lattice sites i and i + 1, f(i) and f(i + 1) are
not correlated in a conceivable way (for large scale simulations, subtle correlations
could show up).

93

Hashing generators are derived from cryptographic hashing functions. These
functions are designed to produce strongly different hash values even for very sim-
ilar inputs, a property that we want to exploit. But while cryptographic hashing
functions need to be cryptographically strong, i. e. hard to break, this property is
not needed for our purposes. Thus the algorithm can be simplified in order to obtain
higher speed. One suitable algorithm (pseudo-DES) is published in [PTVF92].

The disadvantage of these generators is their reduced speed in comparison to
sequence generators. For this reason, hashing generators are not used for traditional
Monte Carlo methods, with the exception of using them for tests. Paul et al. [PZS01]
describe one non-traditional use for a modified, high-dimensional Leath algorithm,
where they use the reproducability of random numbers, so that they do not need to
store state of lattice sites; they can regenerate the state by reproducing the original
random number from the number of the lattice site.

D.4 Speed of different random number generators

Given two PRNGs of sufficient quality (i. e. their correlations do not influence the
result), the faster PRNG is always preferrable, as with a fixed budget of computing
time, the faster generator allows for simulating larger or more lattices, thus reducing
statistical errors. High-performance computing means haggling for every processor
cycle and every bit of memory.

The following table shows runtimes for simulations with different random num-
ber generators, averaged over five runs (each run with different inital seed). All
times are in seconds, for full simulations. For each run, 1010 random numbers
were generated. S (solo) means only random numbers were generated, without us-
ing them (pure overhead of PRNG), P means two-dimensional percolation on an
L = 105 lattice, and I the two-dimensional Ising model on an L = 104 lattice with
100 Monte Carlo sweeps through the lattice. P − S and I − S mean times for
percolation resp. Ising minus time for the solo run of the PRNG. 32 bit and 64 bit
correspond to the size of the generated random word. All runs were done on fast
Opteron processors.

S P P − S I I − S
LCG(16807), 32 bit 18.34 301.58 283.24 61.87 43.52
LCG(16807), 64 bit 21.75 288.24 266.49 62.95 41.19
R(103,250), 32 bit 20.49 312.74 292.25 83.39 62.89
R(103,250), 64 bit 21.74 314.29 292.54 83.82 62.08
R(471,1586,6988,9689), 32 bit 38.95 345.35 306.39 91.70 52.74
R(471,1586,6988,9689), 64 bit 40.73 346.43 305.69 96.34 55.60
R(18,36,37,71,89,124), 32 bit 45.81 352.28 306.46 106.23 60.41
R(18,36,37,71,89,124), 64 bit 48.11 343.56 295.44 104.42 56.30
Pseudo-DES, 32 bit 279.48 576.92 297.46 314.38 34.92

Generally, the LCG generator is the fastest, while the pseudo-DES generator is
the slowest, with a very significant performance penalty; therefore, its use for large
scale simulations is not feasible. The lagged-fibonacci generators are slower than
LCGs, but with an acceptable performance penalty.

As for all runs exactly the same number of random numbers is generated, it is
instructive to compare the amount of simulation work per random number. For the
Ising model, generating random numbers takes 1/3 of the runtime for the fastest
generator. Due to multi-spin coding, examining spins is a very cheap operation,
meaning that slow PRNGs have a very large impact on runtime. In contrast, for
percolation examining a site is rather expensive, as whole words need to be ex-
amined, not just bits in parallel. Therefore, the impact of slow PRNGs is less

94 Random number generators

pronounced.
For the lagged-fibonacci generators, an array is needed to hold intermediate

values. This array competes for cache memory with other data structures needed
for simulation, therefore these generators slow down the rest of the simulation. This
is the reason why P − S and I − S are not constant for the different generators. It
is therefore important to test not only the generator alone, but also in conjunction
with the real simulation, in order to assess its speed.

The values for P and S with 32 and 64 bits for the six-tap generator were
not swapped mistakenly, as one would believe; 64 bits are faster than 32 bits,
although that is counter-intuitive (more memory is needed for 64 bits). One possible
explanation is the optimizing compiler, which could be able to pipeline machine
instructions better when all these instructions are in 64 bits (as the rest of the
simulation is for both percolation and the Ising model). This emphasizes once
again the importance of really measuring speed, and not trying to deduce it from
assumptions.

In summary, the LCG is the fastest random number generator currently in use;
where its quality is sufficient, it should be preferred. LFGs are slower, but for
many apllications still fast enough. Pseudo-DES is too slow for any large-scale
simulations.

Appendix E

Amdahl’s law and measuring

parallel efficency on real-life

computers

Amdahl’s law, named after Gene Amdahl, postulates a theoretical limit for parallel
processing (cf. [Amda67]). Given a program that separates into two fractions, a
strictly sequential part, and a fully parallel part, we can write its required runtime
on a single processor as T (1) = sT (1)+ (1− s)T (1), where s signifies the sequential
fraction, and 1−s the parallel. On N processors, we have T (N) = sT (1)+ 1−s

N T (1),
as the parallel part is supposed to be fully parallel, i. e. it can be broken down in
arbitrary little pieces (as opposed to reality). We can then derive the speedup
S(N) = T (1)/T (N), i. e. how much faster the program is on N processors. This is
Amdahl’s law:

S(N) =
1

s + 1−s
N

(E.1)

Some observations are:

• For large N , i. e. Ns ≫ 1 − s, the sequential part of the program dominates
runtime and limits possible speedup. It is hard to achieve efficient speedup
with many processors.

• Even for N → ∞, the maximum speedup is 1/s. If the program already is
near this limit, it is useless to try to run on even more processors. The return
would be marginal.

• If s ≪ 1 and N is small, then S(N) ∝ N . It is easy to achieve efficient speedup
with few processors.

• The sequential part s determines the success of parallelization. It is important
to reduce s as much as possible.

Although the assumptions leading to Amdahl’s law are oversimplified, it still
offers high quality in predicting runtimes of parallel programs.

It is important to note that the sequential fraction s in many cases depends on
the simulated system size, i. e. a larger system Ld can lead to a smaller s (strong
scaling vs. weak scaling), cf. fig. E.1.

A larger number of processors for a given problem size means that a larger
fraction of the data fits into the caches of the processors, giving rise to superlinear

95

96 Amdahl’s law on real computers

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

S
(N

)

N

Figure E.1: Speedup S(N) for three-dimensional percolation on N processors, +
are for L = 2520, × for L = 5040. The solid line is Amdahl’s law for s = 0.01,
the dashed line for s = 0.003. Outliers are probably caused by operating system
influence (which gets worse for higher processor numbers). The high speedup for the
× is probably caused by super-linear cache-effects, therefore the measured speedup
seems to be very optimistic.

speedup, i. e. S(N) > N . This can complicate estimating the sequential portion of
a program, again cf. fig. E.1.

When the operating system of a parallel computer is not specifically optimized
for highly parallel computing, it sometimes can happen that operating system tasks
interrupt parts of a parallel program on one processor, but not on others. In that
case, the rest of the parallel program has to wait, wasting wall clock time. This
explains the outliers visible in fig. E.1.

In summary, estimating parallel efficiency from the runtime of real-world sim-
ulations is problematic, but still worthwhile to establish how well a program is
parallelized.

Appendix F

Code of programs

F.1 General remarks

The source code of all programs that were used for simulations published in this
thesis, including those printed in this appendix, can be obtained by email from the
author. In case the author can no longer be reached, an electronic version of this
thesis will be published by the Library of the University of Cologne, available at
kups.ub.uni-koeln.de; this way, it is possible to extract electronically the code of the
programs printed in this appendix.

Programs shown here are written in Fortran 90, as Fortran compilers produce
often faster code than C compilers. They are written in free format (as opposed
to fixed format, where some columns of the source code have special meaning), as
the age of keypunching is long over. These programs can be compiled with any
standard-adherent Fortran 90 compiler (tested with IBM-, Sun-, Portland Group-,
and Pathscale-Compilers).

The small slanted numbers on the left side of the listing serve as a guide to
the eye and make pointing to parts of the program easier. They are not a part of
the program and should not be mistaken with labels that are used in old-fashioned
Fortran programs.

A sequential implementation of the traditional Hoshen-Kopelman algorithm is
not presented here, as it is readily available in literature (cf. [StAh94, A.3] for a
short version with detailed explanation, or [Tigg01, C.2] for a longer version).

F.2 Parallelized Hoshen-Kopelman

The source code for a version of parallelized Hoshen-Kopelman was already pub-
lished in [Tigg01], but programmed using shmem-directives for the Cray T3E, and
probably containg a programming error. The version presented here is ported to
MPI (version 1.1) and should be usable on any MPI-capable computer.

Parameters for the simulation can be given as constants in the code. Remarkable
are two boolean constants: fully_periodic switches fully periodic b. c. on or off; when
off, only one instead of two hyperplanes are allocated. sanity_checks switches internal
consistency checks on or off. Whenever modifying the program, it is wise to switch
these on, in order to catch at least some possible errors introduced by new code.
After regaining confidence in the program, one can switch off these checks for higher
speed of simulations.

PROGRAM Verti

implicit none

http://kups.ub.uni-koeln.de/

98 Code

5

include ’mpif.h’

! Parameters

!real*8, parameter :: p = 0.5927464d0 ! 2d

10 !real*8, parameter :: p = 0.311608d0 ! 3d

!real*8, parameter :: p = 0.196889d0 ! 4d

real*8, parameter :: p = 0.1407966d0 ! 5d

integer, parameter :: D=5 ! 2 <= D <= 5

integer, parameter :: L=225

15 integer, parameter :: NPROCS = 45

logical, parameter :: fully_periodic = .true.

integer, parameter :: MAXLOC=45e6

integer, parameter :: MAXGLO=15e6

integer, parameter :: MAXBIN=60

20 integer, parameter :: LOCLIM=0.7*MAXLOC

integer, parameter :: GLOLIM=0.7*MAXGLO

integer, parameter :: MAXPAIR=262143

integer, parameter :: MAXPREP=65535

integer, parameter :: MAXBUF=65536

25 logical, parameter :: sanity_checks = .true.

integer*8, parameter :: one = 1

integer*8, parameter :: Lsystem= (one*L)**D

integer, parameter :: Lline = L**(D-2)

integer, parameter :: Lplane = L/NPROCS*Lline

30 integer, parameter :: idx_pred = 0

integer, parameter :: idx_succ = 1

! Variables

integer*4 :: tag, status(MPI_STATUS_SIZE), err

35 integer*4 :: pe_me, pe_pred, pe_succ, mpi_nprocs

real*8 :: rcplog

integer, parameter :: RNDMAX = 16383

integer*4 :: IP, rnd_data(0:RNDMAX), rnd_idx, current_seed ! 32-bit version

integer*4 :: ISEED

40 integer*8,allocatable :: plane(:), upper(:)

integer*8,allocatable :: local(:)

integer*8,allocatable :: globsites(:)

integer*8,allocatable :: globneigh(:,:)

integer*8,allocatable :: border_recv(:)

45 integer*8 :: ns(0:MAXBIN), nsglobal(0:MAXBIN)

integer*8,save :: preprec_send(0:MAXPREP), preprec_recv(0:MAXPREP)

integer*8,save :: sendbuf(0:MAXBUF), recvbuf(0:MAXBUF)

integer*8,save :: pairdata(0:MAXPAIR, 0:1)

integer :: pairptr(0:1)

50 integer*8,save :: pairrecv(0:MAXPAIR)

integer*8 :: largest

integer :: locptr, gloptr

integer :: nrecyc

real*8 :: t_total, t_init, t_perc, t_anal, t_local, t_nbex, t_prex,&

55 t_recyc, t_relax, t_connect, t_concen, t_facct

real*8 :: t_total_s, t_init_s, t_perc_s, t_anal_s, t_local_s, &

t_nbex_s, t_prex_s, t_recyc_s, t_relax_s, t_connect_s, &

t_concen_s, t_facct_s

integer*8 :: nfree, nocc, nfreeglobal, noccglobal

60 real*8 :: chi, chiglobal

integer*8 :: num_acc_sites=0,num_acc_sites_global

integer*8 :: num_leftover=0,num_leftover_global

integer*8 :: num_glo_labels=0, num_glo_labels_global ! how many global labels do we need to keep?

65 integer :: glob_line, glob_site

! Main program

allocate(plane(-Lline:Lplane-1))

if(fully_periodic) allocate(upper(0:Lplane-1))

70 allocate(local(MAXLOC))

allocate(globsites(0:MAXGLO))

99

allocate(globneigh(0:1,0:MAXGLO))

allocate(border_recv(0:Lline-1))

call mpi_init(err)

75 t_total_s = mpi_wtime()

t_local = 0.0d0

t_nbex = 0.0d0

t_prex = 0.0d0

t_recyc = 0.0d0

80 IP = 2147483648.0d0*(2.0d0*p-1.0d0)

rcplog = 1.0d0/dlog(2.0d0)

if(((L/NPROCS)*NPROCS).ne.L) then

print *, ’L/NPROCS must be a natural number!’

call mpi_abort(MPI_COMM_WORLD, 0, 0)

85 end if

call mpi_comm_size(MPI_COMM_WORLD, mpi_nprocs, err)

if(mpi_nprocs.ne.NPROCS) then

print *, ’Wrong number of processors, is: ’,mpi_nprocs,’, should be: ’,NPROCS

90 call mpi_abort(MPI_COMM_WORLD, 0, 0)

endif

tag = 1

call mpi_comm_rank(MPI_COMM_WORLD, pe_me, err)

95 pe_pred = pe_me - 1

if(pe_pred .eq. -1) pe_pred = NPROCS - 1

pe_succ = pe_me + 1

if(pe_succ .eq. NPROCS) pe_succ = 0

100 if(pe_me .eq. 0) then

read *, ISEED

print *, ’# p = ’, p

print *, ’# IP = ’, IP

print *, ’# L = ’, L

105 print *, ’# MAXLOC = ’, MAXLOC, ’, LOCLIM = ’, LOCLIM

print *, ’# MAXGLO = ’, MAXGLO, ’, GLOLIM = ’, GLOLIM

print *, ’# MAXBIN = ’, MAXBIN

print *, ’# MAXPAIR=’,MAXPAIR,’, MAXPREP=’,MAXPREP,’ MAXBUF=’,MAXBUF

print *, ’# Used PRNG: Fourtap, ISEED = ’, ISEED

110 print *, ’# Lsystem = ’, Lsystem,’, Lplane = ’,Lplane,’, Lline = ’,Lline

print *, ’# Nprocs = ’, NPROCS

endif

call mpi_bcast(iseed, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, err)

call rnd_randomize(ISEED, pe_me)

115 rcplog = 1.0d0/dlog(2.0d0)

nrecyc = 0

nfree = 0

chi = 0.0d0

pairptr(idx_pred) = 0

120 pairptr(idx_succ) = 0

t_init_s = mpi_wtime()

call initialize()

t_init = mpi_wtime() - t_init_s

125 t_perc_s = mpi_wtime()

call percolate()

t_perc = mpi_wtime() - t_perc_s

t_anal_s = mpi_wtime()

call analyze()

130 t_anal = mpi_wtime() - t_anal_s

call output()

t_total = mpi_wtime() - t_total_s

call mpi_reduce(t_total,t_total_s,1,MPI_REAL8,MPI_SUM,0,MPI_COMM_WORLD,err)

call mpi_reduce(t_init,t_init_s,1,MPI_REAL8,MPI_SUM,0,MPI_COMM_WORLD,err)

135 call mpi_reduce(t_perc,t_perc_s,1,MPI_REAL8,MPI_SUM,0,MPI_COMM_WORLD,err)

call mpi_reduce(t_anal,t_anal_s,1,MPI_REAL8,MPI_SUM,0,MPI_COMM_WORLD,err)

call mpi_reduce(t_local,t_local_s,1,MPI_REAL8,MPI_SUM,0,MPI_COMM_WORLD,err)

call mpi_reduce(t_nbex,t_nbex_s,1,MPI_REAL8,MPI_SUM,0,MPI_COMM_WORLD,err)

100 Code

call mpi_reduce(t_prex,t_prex_s,1,MPI_REAL8,MPI_SUM,0,MPI_COMM_WORLD,err)

140 call mpi_reduce(t_recyc,t_recyc_s,1,MPI_REAL8,MPI_SUM,0,MPI_COMM_WORLD,err)

call mpi_reduce(t_relax,t_relax_s,1,MPI_REAL8,MPI_SUM,0,MPI_COMM_WORLD,err)

call mpi_reduce(t_connect,t_connect_s,1,MPI_REAL8,MPI_SUM,0,MPI_COMM_WORLD,err)

call mpi_reduce(t_concen,t_concen_s,1,MPI_REAL8,MPI_SUM,0,MPI_COMM_WORLD,err)

call mpi_reduce(t_facct,t_facct_s,1,MPI_REAL8,MPI_SUM,0,MPI_COMM_WORLD,err)

145 if(pe_me.eq.0) then

print *, ’# Required runtime: ’, t_total_s/NPROCS, ’ seconds’

print *, ’# Speed: ’, 1d-6*Lsystem/t_total_s, ’ MSites/s’

print *, ’# T total: ’, t_total_s/NPROCS

print *, ’# T init: ’, t_init_s/NPROCS

150 print *, ’# T perc: ’, t_perc_s/NPROCS

print *, ’# T local: ’, t_local_s/NPROCS

print *, ’# T neighb. exch.: ’, t_nbex_s/NPROCS

print *, ’# T pair. exch.: ’, t_prex_s/NPROCS

print *, ’# T recycling: ’, t_recyc_s/NPROCS

155 print *, ’# T analysis: ’, t_anal_s/NPROCS

print *, ’# T full relax.: ’, t_relax_s/NPROCS

print *, ’# T connect: ’, t_connect_s/NPROCS

print *, ’# T concentration: ’, t_concen_s/NPROCS

print *, ’# T final accnt.: ’, t_facct_s/NPROCS

160 end if

call mpi_finalize(err)

contains

165

subroutine initialize()

integer i

ns(0:MAXBIN) = 0

170 local(1:MAXLOC) = 0

globsites(1:MAXGLO) = 0

plane(-Lline:Lplane-1) = MAXLOC

if(fully_periodic) upper(0:Lplane-1) = MAXLOC

locptr = 1

175 gloptr = 1

end subroutine

subroutine percolate()

integer i, level

180

glob_line = 1

call perc_one_plane() ! Simulate uppermost plane

! Copy plane for later reference (periodic b.c.)

if(fully_periodic) upper(0:Lplane-1) = plane(0:Lplane-1)

185 do level = 2, L ! Simulate rest of system

glob_line = level

call perc_one_plane()

end do

end subroutine

190

subroutine perc_one_plane()

integer i

logical want_recycling, any_wants_recycling

integer :: tag, status(MPI_STATUS_SIZE), err

195

t_local_s = mpi_wtime()

do i = 0, Lplane-1

glob_site = i

200 call site_Ndim(i)

end do

t_local = t_local + mpi_wtime() - t_local_s

want_recycling = .false.

if((locptr.ge.LOCLIM).or.(gloptr.ge.GLOLIM)) &

205 want_recycling = .true.

101

call mpi_allreduce(want_recycling, any_wants_recycling, 1, MPI_LOGICAL, &

MPI_LOR, MPI_COMM_WORLD, err)

if(any_wants_recycling) then

t_recyc_s = mpi_wtime()

210 if(sanity_checks) call sanity_check()

call garbage_collection()

if(sanity_checks) call sanity_check()

t_recyc = t_recyc + mpi_wtime() - t_recyc_s

end if

215 t_nbex_s = mpi_wtime()

call neighbour_exchange(0, idx_pred, pe_pred, pe_succ)

call neighbour_exchange(Lplane-Lline, idx_succ, pe_succ, pe_pred)

t_nbex = t_nbex + mpi_wtime() - t_nbex_s

t_prex_s = mpi_wtime()

220 call pairing_exchange(idx_pred, pe_pred, pe_succ)

call pairing_exchange(idx_succ, pe_succ, pe_pred)

t_prex = t_prex + mpi_wtime() - t_prex_s

end subroutine

225 subroutine analyze()

integer i

t_relax_s = mpi_wtime()

call full_relaxation()

230 t_relax = mpi_wtime() - t_relax_s

t_connect_s = mpi_wtime()

if(fully_periodic) call connect_top_and_bottom()

t_connect = mpi_wtime() - t_connect_s

t_relax_s = mpi_wtime()

235 call full_relaxation()

t_relax = t_relax + mpi_wtime() - t_relax_s

t_concen_s = mpi_wtime()

call concentrate()

t_concen = mpi_wtime() - t_concen_s

240 t_facct_s = mpi_wtime()

call local_accounting()

call mpi_reduce(num_leftover,num_leftover_global,1,MPI_INTEGER8,MPI_SUM,0,MPI_COMM_WORLD,err)

if((pe_me.eq.0).and.(num_leftover_global.gt.0)) call account_bin(num_leftover_global)

call mpi_reduce(ns(0),nsglobal(0),MAXBIN+1,MPI_INTEGER8,MPI_SUM,0,MPI_COMM_WORLD,err)

245 if(pe_me.eq.0) then

do i = MAXBIN-1, 0, -1

nsglobal(i) = nsglobal(i) + nsglobal(i+1)

end do

end if

250 call mpi_reduce(chi,chiglobal,1,MPI_REAL8,MPI_SUM,0,MPI_COMM_WORLD,err)

call mpi_reduce(nfree,nfreeglobal,1,MPI_INTEGER8,MPI_SUM,0,MPI_COMM_WORLD,err)

call mpi_reduce(nocc,noccglobal,1,MPI_INTEGER8,MPI_SUM,0,MPI_COMM_WORLD,err)

call mpi_reduce(num_acc_sites,num_acc_sites_global,1,MPI_INTEGER8,MPI_SUM,0,MPI_COMM_WORLD,err)

call mpi_reduce(num_glo_labels,num_glo_labels_global,1,MPI_INTEGER8,MPI_MAX,0,MPI_COMM_WORLD,err)

255 t_facct = mpi_wtime() - t_facct_s

end subroutine

subroutine output()

integer :: i

260

if(pe_me.eq.0) then

print *, ’# Num. recycl.: ’, nrecyc

print *, ’# Max num. global labels after recyc: ’, num_glo_labels_global

print *, ’# Occupied: ’, 1.0d0*noccglobal/Lsystem

265 print *, ’# Free: ’, 1.0d0*nfreeglobal/Lsystem

print *, ’# Chi = ’, chiglobal/Lsystem

print *, ’# Number density: ’, 1.0d0*nsglobal(0)/Lsystem

print *, ’# n_occ = ’, noccglobal

print *, ’# n_acc = ’, num_acc_sites_global + num_leftover_global

270 do i = 0, MAXBIN

print *, (one*2)**i, nsglobal(i)

end do

102 Code

end if

end subroutine

275

subroutine site_Ndim(here)

integer, intent(in) :: here

integer*8 :: new, ici

integer :: left, top, third, fourth, fifth

280 integer*8 :: nleft, ntop, nthird, nfourth, nfifth

logical occupied, left_occ, top_occ, third_occ, fourth_occ, fifth_occ

logical global_present

if(rnd_gen() .ge. IP) then

285 ! This site is not occupied

nfree = nfree + 1

plane(here) = MAXLOC

else

! This site is occupied

290 nocc = nocc + 1

ici = 1

top = here

left = here - 1

if(D .ge. 3) third = here - L

295 if(D .ge. 4) fourth = here - L**2

if(D .ge. 5) fifth = here - L**3

top_occ = (plane(top) .lt. MAXLOC)

left_occ = (plane(left) .lt. MAXLOC)

occupied = top_occ .or. left_occ

300 if(D .ge. 3) then

third_occ = (plane(third) .lt. MAXLOC)

occupied = occupied .or. third_occ

end if

if(D .ge. 4) then

305 fourth_occ = (plane(fourth) .lt. MAXLOC)

occupied = occupied .or. fourth_occ

end if

if(D .ge. 5) then

fifth_occ = (plane(fifth) .lt. MAXLOC)

310 occupied = occupied .or. fifth_occ

end if

if(.not. occupied) then

! Neighbours are not occupied, start a new cluster

new = locptr

315 call advance_locptr()

plane(here) = new

local(new) = -2*ici

else

! At least one neighbour is occupied

320 ! If there is only one cluster adjacent, simply connect to it.

! If there are several different clusters, there are several cases:

! 1. all are local -> keep smallest label, redirect all others;

! 2. all but one are local, one is global -> keep global label,

! redirect all others;

325 ! 3. more than one is global -> keep smallest (i.e. min local())

! global label, generate pairing info for other globals, redirect

! all labels.

global_present = .false.

new = MAXLOC

330 nleft = MAXLOC

ntop = MAXLOC

if(D .ge. 3) nthird = MAXLOC

if(D .ge. 4) nfourth = MAXLOC

if(D .ge. 5) nfifth = MAXLOC

335 ! Left is certainly a root label, top not necessarily

if(left_occ) then

nleft = root(plane(left))

new = nleft

if(iand(local(nleft),one).ne.0) global_present = .true.

103

340 end if

if(top_occ) then

ntop = root(plane(top))

if(global_present) then

if(iand(local(ntop),one).ne.0) then

345 new = min(new, ntop)

end if

else

if(iand(local(ntop),one).ne.0) then

new = ntop

350 global_present = .true.

else

new = min(new, ntop)

end if

end if

355 end if

if(D .ge. 3) then

if(third_occ) then

nthird = root(plane(third))

if(global_present) then

360 if(iand(local(nthird),one).ne.0) then

new = min(new, nthird)

end if

else

if(iand(local(nthird),one).ne.0) then

365 new = nthird

global_present = .true.

else

new = min(new, nthird)

end if

370 end if

end if

end if

if(D .ge. 4) then

if(fourth_occ) then

375 nfourth = root(plane(fourth))

if(global_present) then

if(iand(local(nfourth),one).ne.0) then

new = min(new, nfourth)

end if

380 else

if(iand(local(nfourth),one).ne.0) then

new = nfourth

global_present = .true.

else

385 new = min(new, nfourth)

end if

end if

end if

end if

390 if(D .ge. 5) then

if(fifth_occ) then

nfifth = root(plane(fifth))

if(global_present) then

if(iand(local(nfifth),one).ne.0) then

395 new = min(new, nfifth)

end if

else

if(iand(local(nfifth),one).ne.0) then

new = nfifth

400 global_present = .true.

else

new = min(new, nfifth)

end if

end if

405 end if

end if

104 Code

! End of sanity check.

! Local clusters which are not equal new can simply be redirected to

! new, regardless if new is local or global.

410 ! For global clusters, the situation is different: pairing info needs

! to be generated.

if(left_occ) then

if(iand(local(nleft),one).eq.0) then

ici = ici - local(nleft)/2

415 else

ici = ici - globsites(-local(nleft)/2)/2

end if

if(nleft .ne. new) then

if(iand(local(nleft),one).ne.0) then

420 ! new and nleft are different, and both are global and have to

! be joined.

call gen_pair(new, nleft)

globsites(-local(nleft)/2) = 0

! Try:

425 globneigh(0:1,-local(nleft)/2) = MAXLOC

end if

local(nleft) = new

end if

end if

430 if(top_occ) then

if(ntop .ne. nleft) then

if(iand(local(ntop),one).eq.0) then

ici = ici - local(ntop)/2

else

435 ici = ici - globsites(-local(ntop)/2)/2

end if

if(ntop.ne.new) then

if(iand(local(ntop),one).ne.0) then

call gen_pair(new, ntop)

440 globsites(-local(ntop)/2) = 0

! Try:

globneigh(0:1,-local(ntop)/2) = MAXLOC

end if

local(ntop) = new

445 end if

end if

end if

if(D .ge. 3) then

if(third_occ) then

450 if((nthird.ne.nleft).and.(nthird.ne.ntop)) then

if(iand(local(nthird),one).eq.0) then

ici = ici - local(nthird)/2

else

ici = ici - globsites(-local(nthird)/2)/2

455 end if

if(nthird.ne.new) then

if(iand(local(nthird),one).ne.0) then

call gen_pair(new, nthird)

globsites(-local(nthird)/2) = 0

460 end if

local(nthird) = new

end if

end if

end if

465 end if

if(D .ge. 4) then

if(fourth_occ) then

if((nfourth.ne.nleft).and.(nfourth.ne.ntop).and.(nfourth.ne.nthird))&

then

470 if(iand(local(nfourth),one).eq.0) then

ici = ici - local(nfourth)/2

else

ici = ici - globsites(-local(nfourth)/2)/2

105

end if

475 if(nfourth.ne.new) then

if(iand(local(nfourth),one).ne.0) then

call gen_pair(new, nfourth)

globsites(-local(nfourth)/2) = 0

end if

480 local(nfourth) = new

end if

end if

end if

end if

485 if(D .ge. 5) then

if(fifth_occ) then

if((nfifth.ne.nleft).and.(nfifth.ne.ntop).and.(nfifth.ne.nthird)&

.and.(nfifth.ne.nfourth)) then

if(iand(local(nfifth),one).eq.0) then

490 ici = ici - local(nfifth)/2

else

ici = ici - globsites(-local(nfifth)/2)/2

end if

if(nfifth.ne.new) then

495 if(iand(local(nfifth),one).ne.0) then

call gen_pair(new, nfifth)

globsites(-local(nfifth)/2) = 0

end if

local(nfifth) = new

500 end if

end if

end if

end if

! Write back number of sites. Differentiate between local and global

505 ! labels.

plane(here) = new

if(global_present) then

globsites(-local(new)/2) = -2*ici-1

else

510 local(new) = -2*ici

end if

end if

end if

end subroutine

515

! root(MAXLOC) gives MAXLOC, to make life easier

integer*8 recursive function root(lab) result(rootlabel)

integer*8, intent(in) :: lab

520 if(lab .eq. 0) print *, ’Error: root(0)!’

if(lab .eq. MAXLOC) then

rootlabel = MAXLOC

else if(local(lab) .lt. 0) then

rootlabel = lab

525 else if (local(lab) .eq. 0) then

print *, ’ERROR: Dead end! lab = ’, lab

print *, ’pe = ’, pe_me,’, glob_line = ’, glob_line, ’, glob_site = ’, glob_site

call mpi_abort(MPI_COMM_WORLD, 0, 0)

else

530 local(lab) = root(local(lab))

rootlabel = local(lab)

end if

end function

535 subroutine gen_pair(lone, ltwo)

integer*8, intent(in) :: lone, ltwo

integer*8 :: gone, gtwo

if(sanity_checks) then

540 ! Are lone, ltwo root labels?

106 Code

if(local(lone).ge.0) print *, &

’Error: in gen_pair, lone is not root label, pe=’, pe_me,&

’, line=’,glob_line,’, site=’,glob_site

if(local(ltwo).ge.0) print *, &

545 ’Error: in gen_pair, ltwo is not root label, pe=’, pe_me,&

’, line=’,glob_line,’, site=’,glob_site

! Are lone, ltwo global labels?

if(iand(local(lone),one).eq.0) print *, &

’Error: local label lone fed to gen_pair. pe=’,pe_me,’, line=’,&

550 glob_line,’, site=’,glob_site,’lone=’,lone

if(iand(local(ltwo),one).eq.0) print *, &

’Error: local label ltwo fed to gen_pair. pe=’,pe_me,’, line=’,&

glob_line,’, site=’,glob_site,’ltwo=’,ltwo

end if

555 gone = -local(lone)/2

gtwo = -local(ltwo)/2

if(sanity_checks) then

! Are gone, gtwo valid?

if((gone.lt.1).or.(gone.gt.MAXGLO-1)) print *, &

560 ’Error: in gen_pair, gone is invalid, pe=’, pe_me,’, line=’,glob_line,&

’, site=’,glob_site,’gone=’,gone

if((gtwo.lt.1).or.(gtwo.gt.MAXGLO-1)) print *, &

’Error: in gen_pair, gtwo is invalid, pe=’, pe_me,’, line=’,glob_line,&

’, site=’,glob_site,’gtwo=’,gtwo

565 if(globsites(gone).eq.0) print *, &

’Error: in gen_pair, globsites(gone)=0, pe=’, pe_me,’, line=’,glob_line,&

’, site=’,glob_site,’gone=’,gone

if(globsites(gtwo).eq.0) print *, &

’Error: in gen_pair, globsites(gtwo)=0, pe=’, pe_me,’, line=’,glob_line,&

570 ’, site=’,glob_site,’gtwo=’,gtwo

! Are gone, gtwo different?

if(gone.eq.gtwo) print *, &

’Error: in gen_pair, gone=gtwo, pe=’, pe_me,’, line=’,glob_line,&

’, site=’,glob_site,’gone=’,gone

575 end if

call half_pair(gone, gtwo, idx_pred)

call half_pair(gone, gtwo, idx_succ)

end subroutine

580 subroutine half_pair(gone, gtwo, idx)

integer*8, intent(in) :: gone, gtwo

integer, intent(in) :: idx

integer*8 :: pone, ptwo, smaller, larger

585 pone = globneigh(idx, gone)

ptwo = globneigh(idx, gtwo)

smaller = min(pone, ptwo)

larger = max(pone, ptwo)

if(sanity_checks.and.(smaller.eq.0)) print *, &

590 ’Error: label 0 half_pair. pe = ’,pe_me,’, glob_line = ’,glob_line,’, &

glob_site = ’,glob_site,’, idx = ’, idx

globneigh(idx, gone) = smaller

if(larger.lt.MAXLOC) then

pairdata(pairptr(idx) , idx) = smaller

595 pairdata(pairptr(idx)+1, idx) = larger

call advance_pairptr(idx)

endif

end subroutine

600 ! pred-succ-direction: receive send

! offset = 0 pred --------> me --------> succ

! idx = idx_pred

! pe_recv = pe_pred

! pe_send = pe_succ

605 ! succ-pred-direction: send receive

! offset = Lplane-Lline pred <-------- me <-------- succ

! idx = idx_succ

107

! pe_recv = pe_succ

! pe_send = pe_pred

610 subroutine neighbour_exchange(offset, idx, pe_recv, pe_send)

integer offset

integer idx ! idx_pred, idx_succ

integer*4, intent(in) :: pe_recv, pe_send

615 integer i

integer*8 nrlab, first, second, smaller, larger

integer :: tag, status(MPI_STATUS_SIZE), err

call reclassify_borders()

620 call mpi_sendrecv(&

plane(Lplane-Lline-offset), Lline, MPI_INTEGER8, pe_send, 5,&

border_recv(0), Lline, MPI_INTEGER8, pe_recv, 5,&

MPI_COMM_WORLD, status, err)

do i = 0, Lline-1

625 if((border_recv(i).ne.MAXLOC).and.(plane(offset+i).ne.MAXLOC)) then

! There is an interconnection

nrlab = root(plane(offset+i))

if(iand(local(nrlab),one).eq.0) then

! Is a local label, transfer it to global

630 globsites(gloptr) = local(nrlab) - 1

if(sanity_checks.and.(border_recv(i).eq.0)) print *, &

’Error: label 0 in neighbour_exchange’

globneigh(idx,gloptr) = border_recv(i)

globneigh(1-idx,gloptr) = MAXLOC

635 local(nrlab) = -2*gloptr-1

call advance_gloptr()

else

! Is a global label. Three cases possible:

! 1. labels in border_recv(i) and globneigh(idx,-local(nrlab)/2) are

640 ! the same -> don’t do anything;

! 2. globneigh(idx,-local(nrlab)/2) = MAXLOC -> connect the global

! label to border_recv(i);

! 3. labels in border_recv(i) and globneigh(idx,-local(nrlab)/2) are

! different -> tell our neighbour to join these (pairing).

645 first = border_recv(i)

second = globneigh(idx,-local(nrlab)/2)

if(second.eq.MAXLOC) then

if(first.eq.0) print *, ’Error: label 0 in neighbour_exchange’

globneigh(idx,-local(nrlab)/2) = first

650 else if(first .ne. second) then

smaller = min(first, second)

larger = max(first, second)

if(smaller.eq.0) print *, ’Error: label 0 in neighbour_exchange’

globneigh(idx,-local(nrlab)/2) = smaller

655 pairdata(pairptr(idx),idx) = smaller

pairdata(pairptr(idx)+1,idx) = larger

call advance_pairptr(idx)

end if

end if

660 end if

end do

end subroutine

! Receive pairing information from idx neighbour. Process it. During the

665 ! processing, pairing information for the 1-idx neighbour can arise.

! pred-succ-direction: receive send

! idx = idx_pred pred --------> me --------> succ

! pe_recv = pe_pred

! pe_send = pe_succ

670 ! succ-pred-direction: send receive

! idx = idx_succ pred <-------- me <-------- succ

! pe_recv = pe_succ

! pe_send = pe_pred

subroutine pairing_exchange(idx, pe_recv, pe_send)

108 Code

675 integer idx

integer*4, intent(in) :: pe_recv, pe_send

integer recvptr

tag = 1

680 ! Add sentinel

pairdata(pairptr(1-idx), 1-idx) = 0

call mpi_sendrecv(&

pairdata(0,1-idx), MAXPAIR+1, MPI_INTEGER8, pe_send, 4,&

pairrecv(0), MAXPAIR+1, MPI_INTEGER8, pe_recv, 4,&

685 MPI_COMM_WORLD, status, err)

pairptr(1-idx) = 0

recvptr = 0

do

if(pairrecv(recvptr) .eq. 0) exit ! reached sentinel

690 call pair_a_pair(pairrecv(recvptr), pairrecv(recvptr+1), idx)

recvptr = recvptr+2

if(sanity_checks.and.(recvptr .ge. MAXPAIR)) then ! CANTHAPPEN

print *, ’Error: recvptr .ge. MAXPAIR: CANTHAPPEN’

call mpi_abort(MPI_COMM_WORLD, 0, 0)

695 end if

end do

end subroutine

subroutine pair_a_pair(ione, itwo, idx)

700 integer*8, intent(in) :: ione, itwo

integer, intent(in) :: idx

integer*8 :: lone, ltwo, gone, gtwo, pone, ptwo, smaller, larger

lone = root(ione)

705 ltwo = root(itwo)

if(lone .ne. ltwo) then

smaller = min(lone, ltwo)

larger = max(lone, ltwo)

lone = smaller

710 ltwo = larger

gone = -local(lone)/2 ! the label which will be kept

gtwo = -local(ltwo)/2 ! the label which will be discarded

! As pairing info came from idx neighbour, the labels are already

! joined there. Pick the smaller label and keep it, ignore the larger.

715 if(sanity_checks.and.(min(globneigh(idx,gone),globneigh(idx,gtwo)).eq.0)) &

print *, ’Error: label 0 in pair_a_pair, pe = ’,pe_me,’,line=’,&

glob_line,’site=’,glob_site

globneigh(idx,gone) = min(globneigh(idx,gone),globneigh(idx,gtwo))

pone = globneigh(1-idx,gone)

720 ptwo = globneigh(1-idx,gtwo)

smaller = min(pone, ptwo)

larger = max(pone, ptwo)

pone = smaller

ptwo = larger

725 if((pone.ne.MAXLOC).and.(ptwo.ne.MAXLOC).and.(pone.ne.ptwo)) then

pairdata(pairptr(1-idx) ,1-idx) = pone

pairdata(pairptr(1-idx)+1,1-idx) = ptwo

call advance_pairptr(1-idx)

end if

730 if(sanity_checks.and.(pone.eq.0)) print *, &

’Error: label 0 in pair_a_pair, pe = ’,pe_me,’,line=’,glob_line,&

’site=’,glob_site

globneigh(1-idx,gone) = pone

globsites(gone) = 2*(globsites(gone)/2+globsites(gtwo)/2)-1

735 globsites(gtwo) = 0

globneigh(0:1,gtwo) = MAXLOC

local(ltwo) = lone

end if

end subroutine

740

! Exchange pairing information until no new pairing information arises.

109

subroutine full_relaxation()

logical once_more, once_more_ored

745 do

call pairing_exchange(idx_pred, pe_pred, pe_succ)

call pairing_exchange(idx_succ, pe_succ, pe_pred)

once_more = .false.

if((pairptr(idx_pred).ne.0).or.(pairptr(idx_succ).ne.0)) once_more = .true.

750 call mpi_allreduce(once_more, once_more_ored, 1, MPI_LOGICAL, MPI_LOR, &

MPI_COMM_WORLD, err)

if(.not. once_more_ored) exit

end do

end subroutine

755

subroutine concentrate()

integer num, max_num

do

760 num = concentrate_once()

call mpi_allreduce(num,max_num,1,MPI_INTEGER,MPI_MAX,MPI_COMM_WORLD,err)

if(max_num .eq. 0) exit

end do

end subroutine

765

integer function concentrate_once()

integer i, ptr, num

integer*8 lab

logical once_more, any_wants_more

770

once_more = .true.

num = 0

i = 1

do

775 ptr = 0

do

if((local(i).lt.0).and.(iand(local(i),one).ne.0)) then

lab = -local(i)/2

if((globneigh(idx_succ,lab).eq.MAXLOC).and.(globsites(lab).lt.0)) then

780 ! no succ. neighb., global label is valid (important when used

! during global recycling).

sendbuf(ptr) = globneigh(idx_pred,lab)

sendbuf(ptr+1) = globsites(lab)

globsites(lab) = 0

785 globneigh(0:1,lab) = MAXLOC

local(i) = 0

ptr = ptr + 2

num = num + 1

end if

790 end if

i = i + 1

if((ptr.ge.MAXBUF-1).or.(i.eq.MAXLOC)) exit

end do

if(i.eq.MAXLOC) once_more = .false.

795 sendbuf(ptr) = 0 ! add sentinel

call conc_helper()

call mpi_allreduce(once_more, any_wants_more, 1, MPI_LOGICAL, MPI_LOR, &

MPI_COMM_WORLD, err)

if(.not. once_more) exit

800 end do

sendbuf(0) = 0 ! No more data to transmit

do

if(.not. any_wants_more) exit

call conc_helper()

805 call mpi_allreduce(once_more, any_wants_more, 1, MPI_LOGICAL, MPI_LOR, &

MPI_COMM_WORLD, err)

end do

concentrate_once = num

110 Code

end function

810

subroutine conc_helper()

integer ptr

integer*8 lab, ici, gl, signum

815 call mpi_sendrecv(sendbuf(0), MAXBUF+1, MPI_INTEGER8, pe_pred, 6, &

recvbuf(0), MAXBUF+1, MPI_INTEGER8, pe_succ, 6, &

MPI_COMM_WORLD, status, err)

ptr = 0

do

820 if(recvbuf(ptr).eq.0) exit ! reached sentinel

lab = root(recvbuf(ptr))

if(sanity_checks.and.(iand(local(lab),one).eq.0)) then

print *, ’Error: local label received in conc_helper, pe = ’, pe_me, &

’, lab = ’, recvbuf(ptr)

825 call mpi_abort(MPI_COMM_WORLD, 0, 0)

end if

gl = -local(lab)/2

if(sanity_checks.and.(recvbuf(ptr+1).ge.0)) print *, &

’Error: illegal recvbuf in conc_helper’

830 ! When doing concentration during recycling, we must honor and preserve the

! sign of globsites (positive if label is alive in this strip, negative if

! label is dead in this strip).

if(globsites(gl).lt.0) then

signum = -1

835 else

signum = 1

end if

ici = 2 * (signum*globsites(gl)/2 - recvbuf(ptr+1)/2) + 1 ! ici is positive!

globsites(gl) = signum*ici ! can be positive or negative during recycling

840 globneigh(idx_succ, gl) = MAXLOC

if(globneigh(idx_pred,gl).eq.MAXLOC) then ! convert to local

ici = globsites(gl)/2

if(ici.gt.0) ici=-ici ! For local labels, always negative

globsites(gl) = 0

845 globneigh(0:1,gl) = MAXLOC

local(recvbuf(ptr)) = 2 * ici

end if

ptr = ptr + 2

end do

850 end subroutine

subroutine local_accounting()

integer i

integer*8 :: gl

855

call prepare_recycling(idx_pred,pe_pred,pe_succ)

call prepare_recycling(idx_succ,pe_succ,pe_pred)

do i = 1, MAXLOC

if((local(i).lt.0).and.(iand(local(i),one).eq.0)) call account_label(i)

860 if((local(i).lt.0).and.(iand(local(i),one).eq.1)) then

gl = -local(i)/2

if(globsites(gl).ne.0) &

print *, ’# Leftover global label g=’,gl,&

’, local=’, i, &

865 ’, succ=’, globneigh(idx_succ,gl), &

’, pred=’, globneigh(idx_pred,gl), &

’, pe=’,pe_me,’, size=’, globsites(gl)

num_leftover = num_leftover - globsites(gl)/2

end if

870 end do

end subroutine

subroutine reclassify_borders()

integer i

875

111

do i = 0, Lline-1

plane(i) = root(plane(i))

end do

do i = Lplane-Lline, Lplane-1

880 plane(i) = root(plane(i))

end do

end subroutine

subroutine garbage_collection()

885 integer i

integer*8 :: lab, gl, numglolabs

nrecyc = nrecyc + 1

call full_relaxation() ! Exchange pairing info until there no longer is any

890 call prepare_recycling(idx_pred, pe_pred, pe_succ) ! Reclassify all of our

call prepare_recycling(idx_succ, pe_succ, pe_pred) ! neighbours’ pointers

call reclassify_planes() ! Reclassify upper() and plane()

! According to theory, no one anywhere references any longer our non-root

! labels (neither local nor global ones), so we are allowed to delete them

895 ! all. While doing this, mark all global labels with inverted sign, so that

! they aren’t discarded in the later process.

do i = 1, MAXLOC

if(local(i) .ge. 0) local(i) = 0

end do

900 ! Walk through upper() and plane() and mark all living labels with an

! inverted sign. globsites() of global labels are marked, too.

do i = 0, Lplane-1

lab = plane(i)

if(local(lab).lt.0) then

905 if(iand(local(lab),one).ne.0) then ! is global

gl = -local(lab)/2

if(sanity_checks.and.(globsites(gl).ge.0)) then

print *, ’Error: local label pointing to illegal global label’

stop 7

910 end if

globsites(gl) = -globsites(gl) ! Mark living global label with pos. sign

end if

local(lab) = -local(lab) ! Mark living label with pos. sign

end if

915 if(fully_periodic) then

lab = upper(i)

if(local(lab).lt.0) then

if(iand(local(lab),one).ne.0) then ! is global

gl = -local(lab)/2

920 if(globsites(gl).ge.0) then

print *, ’Error: local label pointing to illegal global label’

stop 7

end if

globsites(gl) = -globsites(gl) ! Mark lvng glbl label with pos. sign

925 end if

local(lab) = -local(lab) ! Mark living label with pos. sign

end if

end if

end do

930 ! Throw away labels with negative sign, unless they are global labels.

! (otherwise they are dead local labels).

! Count them. Flip back labels with positive sign. Don’t yet flip the

! corresponding globsites() for global labels.

if(sanity_checks) then

935 do i = 1, MAXLOC

if(local(i).lt.0) then

if(iand(local(i),one).ne.0) then

if(globsites(-local(i)/2).gt.0) print *, ’Error: local<0, global>0’

if(globsites(-local(i)/2).eq.0) print *, ’Error: local<0, global=0’

940 end if

end if

if(local(i).gt.0) then

112 Code

if(iand(local(i),one).ne.0) then

if(globsites(local(i)/2).lt.0) print *, ’Error: local>0, global<0’

945 if(globsites(local(i)/2).eq.0) print *, ’Error: local>0, global=0’

end if

end if

end do

end if

950 do i = 1, MAXLOC

if((local(i).lt.0).and.(iand(local(i),one).eq.0)) then

call account_label(i)

local(i) = 0

end if

955 if(local(i).gt.0) local(i) = -local(i)

end do

! Now we have the following situation: there are no indirect labels.

! All dead local clusters are cleaned. Present are living local clusters

! and all local labels that point to global labels. The globsites for

960 ! global labels are negative if they are dead in this strip, and positive,

! if they are alive in this strip.

! Now we can do concentration.

if(sanity_checks) then

! All locals must be negative or zero

965 do i = 1, MAXLOC

if(local(i).gt.0) print *, ’Error: positive local during gc’

if((local(i).lt.0).and.(iand(local(i),one).ne.0).and.(globsites(-local(i)/2).eq.0)) &

print *, ’Error: dangling local to global’

end do

970 end if

call concentrate()

! Flip back all pos. globsites to negative (these were the globals that are

! alive in this strip).

numglolabs = 0

975 do i = 1, MAXGLO

if(globsites(i).gt.0) globsites(i)=-globsites(i)

if(globsites(i).ne.0) numglolabs = numglolabs + 1

end do

num_glo_labels = max(num_glo_labels, numglolabs) ! Number of alive globals after recyc

980 ! Let locptr point to the first free label.

! Let gloptr point to the first free entry.

locptr = 0

call advance_locptr()

gloptr = 0

985 call advance_gloptr()

end subroutine

subroutine preprec_forthnback(pe_recv, pe_send)

integer*4, intent(in) :: pe_recv, pe_send

990 integer ptr

call mpi_sendrecv(preprec_send(0), MAXPREP+1, MPI_INTEGER8, pe_send, 7, &

preprec_recv(0), MAXPREP+1, MPI_INTEGER8, pe_recv, 7, &

MPI_COMM_WORLD, status, err)

995 ! reclassify labels

ptr = 0

do

if(preprec_recv(ptr).eq.0) exit ! reached sentinel

if(sanity_checks.and.(preprec_recv(ptr).lt.0)) print *, ’Error: negative preprec_recv!’

1000 preprec_recv(ptr) = root(preprec_recv(ptr))

ptr = ptr + 1

end do

call mpi_sendrecv(preprec_recv(0), MAXPREP+1, MPI_INTEGER8, pe_recv, 8, &

preprec_send(0), MAXPREP+1, MPI_INTEGER8, pe_send, 8, &

1005 MPI_COMM_WORLD, status, err)

end subroutine

! pred-succ-direction: receive send

! idx = idx_pred pred --------> me --------> succ

113

1010 ! pe_recv = pe_pred

! pe_send = pe_succ

! succ-pred-direction: send receive

! idx = idx_succ pred <-------- me <-------- succ

! pe_recv = pe_succ

1015 ! pe_send = pe_pred

subroutine prepare_recycling(idx, pe_recv, pe_send)

integer idx

integer*4, intent(in) :: pe_recv, pe_send

integer ptr, i, begin

1020 logical once_more, any_wants_more

once_more = .true.

i = 1

begin = i

1025 do

ptr = 0

do

if((globsites(i).ne.0).and.(globneigh(1-idx,i).ne.MAXLOC)) then

preprec_send(ptr) = globneigh(1-idx,i)

1030 ptr = ptr + 1

end if

i = i + 1

if((ptr.ge.MAXPREP-1).or.(i.eq.MAXGLO)) exit

end do

1035 if(i.eq.MAXGLO) once_more = .false.

preprec_send(ptr) = 0 ! add sentinel

call preprec_forthnback(pe_recv, pe_send)

call mpi_allreduce(once_more, any_wants_more, 1, MPI_LOGICAL, MPI_LOR, &

MPI_COMM_WORLD, err)

1040 ptr = 0

i = begin

do

if(preprec_send(ptr).eq.0) exit ! reached sentinel

if((globsites(i).ne.0).and.(globneigh(1-idx,i).ne.MAXLOC)) then

1045 if(sanity_checks.and.(preprec_send(ptr).eq.0)) print *, ’Error: label 0 in pre-

pare_recycling’

globneigh(1-idx,i) = preprec_send(ptr)

ptr = ptr + 1

end if

i = i + 1

1050 end do

begin = i

if(.not. once_more) exit

end do

preprec_send(0) = 0 ! We no longer have data to transmit

1055 do

if(.not. any_wants_more) exit

call preprec_forthnback(pe_recv, pe_send)

call mpi_allreduce(once_more, any_wants_more, 1, MPI_LOGICAL, MPI_LOR, &

MPI_COMM_WORLD, err)

1060 end do

end subroutine

subroutine reclassify_planes()

integer i

1065

do i = 0, Lplane-1

plane(i) = root(plane(i))

if(fully_periodic) upper(i) = root(upper(i))

end do

1070 end subroutine

! Let locptr point to the next free label

subroutine advance_locptr()

1075 do

114 Code

locptr = locptr + 1

if(locptr .ge. MAXLOC) then

print *, ’Error: locptr .ge. MAXLOC’

call mpi_abort(MPI_COMM_WORLD, 0, 0)

1080 end if

if(local(locptr) .eq. 0) exit

end do

end subroutine

1085 ! Let gloptr point to the next free label

subroutine advance_gloptr()

do

gloptr = gloptr + 1

1090 if(gloptr .ge. MAXGLO) then

print *, ’Error: gloptr .ge. MAXGLO’

call mpi_abort(MPI_COMM_WORLD, 0, 0)

end if

if(globsites(gloptr) .eq. 0) exit

1095 end do

end subroutine

subroutine advance_pairptr(idx)

integer idx

1100

pairptr(idx) = pairptr(idx)+2

if(pairptr(idx) .ge. MAXPAIR) then

print *, ’Error: pairptr(idx) .ge. MAXPAIR’

call mpi_abort(MPI_COMM_WORLD, 0, 0)

1105 end if

end subroutine

subroutine connect_top_and_bottom()

integer :: i

1110 integer*8 :: ui, pi, smaller, larger

logical :: ui_loc, pi_loc

do i = 0, Lplane-1

glob_site = i

1115 ui = root(upper(i))

pi = root(plane(i))

if((ui.eq.MAXLOC).or.(pi.eq.MAXLOC)) cycle

if(ui.eq.pi) cycle

ui_loc = ((iand(local(ui),one)).eq.0)

1120 pi_loc = ((iand(local(pi),one)).eq.0)

smaller = min(ui,pi)

larger = max(ui,pi)

if(ui_loc .and. pi_loc) then ! both local

local(smaller) = local(smaller) + local(larger)

1125 local(larger) = smaller

else if((.not. ui_loc).and.(.not. pi_loc)) then ! both global

globsites(-local(smaller)/2) = &

2* (globsites(-local(smaller)/2)/2 &

+ globsites(-local(larger)/2)/2) -1

1130 call gen_pair(smaller, larger)

globsites(-local(larger)/2) = 0

globneigh(0:1,-local(larger)/2) = MAXLOC

local(larger) = smaller

else ! one local, one global

1135 if(ui_loc) then

smaller = pi ! smaller is the global

larger = ui ! larger is the local

else

smaller = ui ! smaller is the global

1140 larger = pi ! larger is the local

end if

globsites(-local(smaller)/2) = 2 * (globsites(-local(smaller)/2)/2 + &

115

local(larger)/2) - 1

local(larger) = smaller

1145 end if

end do

end subroutine

subroutine account_label(lab)

1150 integer lab

integer ibin

num_acc_sites = num_acc_sites - local(lab)/2

call account_bin(-local(lab)/2)

1155 call account_chi(-local(lab)/2)

end subroutine

subroutine account_bin(sites)

integer*8, intent(in) :: sites

1160 integer ibin

ibin = dlog(1.0d0*sites)*rcplog+0.00001d0

if(ibin .le. MAXBIN) ns(ibin) = ns(ibin) + 1

end subroutine

1165

subroutine account_chi(sites)

integer*8, intent(in) :: sites

chi = chi + sites*sites

1170 end subroutine

! 32 bit LFG: R(471,1586,6988,9689)

subroutine rnd_randomize(iseed, seedshift)

integer*4 :: iseed, seedshift

1175 integer :: i, ii

integer*4 :: ibm, ici

ibm = 2*iseed-1

do i = 0, seedshift

1180 ibm = 65539 * ibm

end do

do i = 0, RNDMAX

ici = 0

do ii = 1, 32 ! 32-bit version

1185 ici = ishft(ici, 1)

ibm = ibm * 16807

if(ibm .lt. 0) ici = ior(ici, 1)

end do

rnd_data(i) = ici

1190 end do

rnd_idx = 0

do i = 1, 8*(RNDMAX+1) ! "heat up" generator

ibm = rnd_gen()

end do

1195 end subroutine

integer*4 function rnd_gen()

rnd_idx = iand(rnd_idx + 1, RNDMAX)

rnd_data(rnd_idx) = ieor(&

1200 ieor(rnd_data(iand(rnd_idx-471,RNDMAX)),rnd_data(iand(rnd_idx-1586,RNDMAX))),&

ieor(rnd_data(iand(rnd_idx-6988,RNDMAX)),rnd_data(iand(rnd_idx-9689,RNDMAX))))

rnd_gen = rnd_data(rnd_idx)

end function

1205 ! Only for debugging purposes:

subroutine sanity_check()

integer i

integer*8 g

116 Code

1210 do i = 1, MAXLOC

if(local(i).eq.0) cycle

if(local(i).gt.0) then

call check_indirect(i)

else

1215 if(iand(local(i),one).ne.0) then

g = -local(i)/2

if((g.lt.1).or.(g.ge.MAXGLO)) then

print *, ’Error: Out of range for global label’

cycle

1220 end if

if((globsites(g).eq.0).or.(globneigh(0,g).eq.0).or.&

(globneigh(1,g).eq.0)) then

print *, ’Error: Zeroed global label ’, g

cycle

1225 end if

if((globneigh(0,g).eq.MAXLOC).and.(globneigh(1,g).eq.MAXLOC)) then

print *, ’Error: Unsane global label ’, g

cycle

end if

1230 end if

end if

end do

do i = 1, MAXGLO

if(globsites(i).eq.0) cycle

1235 if((globneigh(0,i).eq.MAXLOC).and.(globneigh(1,i).eq.MAXLOC)) &

print *, ’Error: filled global label with no neighbours! pe=’,pe_me,&

’, line=’,glob_line,’, globlabel=’,i

end do

end subroutine

1240

! Only for debugging purposes:

subroutine check_indirect(lab)

integer, intent(in) :: lab

integer*8 :: nxt

1245 integer :: i

i = 0

nxt = local(lab)

do

1250 i = i + 1

if((nxt.lt.1).or.(nxt.ge.MAXLOC)) then

print *, ’Error: Local pointer out of range for label ’, lab

exit

end if

1255 if(local(nxt).eq.0) then

print *, ’Error: Dead end for label ’, lab

exit

end if

if(local(nxt).lt.0) exit

1260 if(i.ge.100) then

print *, ’Error: Too much indirections for label ’, lab

exit

end if

nxt = local(nxt)

1265 end do

end subroutine

end

F.3 Percolation on growing lattices

This program is serial and uses only standard Fortran 90, no extensions. Paral-
lelization is achieved via replication, i. e. running many instances independently,
using different seed values for the random number generator.

117

program Varyl3d

implicit none

5

integer, parameter :: Lmax = 5000

integer, parameter :: Stepmax = 64

integer, parameter :: MAX = 5e7

integer, parameter :: LIMIT = 0.7*MAX

10 integer, parameter :: MAXBIN = 63

integer, parameter :: RNDMAX = 16383

integer, parameter :: MAXINF = 63

integer, parameter :: VERSION_NUMBER = 1

15 integer*8 :: A(0:Lmax,0:Lmax), B(0:Lmax,0:Lmax), C(0:Lmax,0:Lmax)

integer*8 :: AB(0:Lmax), BC(0:Lmax), CA(0:Lmax)

integer*8 :: ABC

integer*8 :: label(0:MAX) ! label(0) is never used!

integer*8 :: label_peri(0:MAX) ! label_peri(0) is never used!

20 integer*8 :: X(0:Lmax,0:Lmax), Y(0:Lmax,0:Lmax), Z(0:Lmax,0:Lmax)

integer*4 :: IP, rnd_data(0:RNDMAX), rnd_idx ! 32-bit version

integer*4, parameter :: one32 = 1

25 integer*8 :: ns_inrun(0:MAXBIN)

integer*8 :: ns_open(0:MAXBIN, 0:Stepmax-2) ! L=1 is not counted

integer*8 :: ns_peri(0:MAXBIN, 0:Stepmax-2) ! L=1 is not counted

integer*8 :: largest_inrun, largest_peri

integer*8 :: largest_sum(0:Stepmax-2), largest_max(0:Stepmax-2)

30 integer*8 :: inf_label(0:MAXINF), inf_sum(0:Stepmax-2)

integer :: inf_ptr

real*8 :: chi_inrun, chi_peri, chi_sum(0:Stepmax-2)

integer :: L, step_to_L(0:Stepmax-2)

integer :: nrlab

35 integer :: stepwidth, step_nr, run_nr

integer :: initial_seed

real*8 :: p

real*8 :: rcplog

character :: filename *100

40 integer :: Runmax

integer :: nrecyc

real*4 :: etime, dummy, tstart(2), tstop(2), tcurr(2)

real*4 :: t_firstini, t_ini, t_perc, t_anal

45 read *, p

read *, initial_seed

read *, Runmax

print *, ’# Lmax = ’, Lmax

50 print *, ’# Stepmax = ’, Stepmax

print *, ’# Runmax = ’, Runmax

print *, ’# MAX = ’, MAX

print *, ’# LIMIT = ’, LIMIT

print *, ’# MAXBIN = ’, MAXBIN

55 print *, ’# p = ’, p

print *, ’# initial_seed = ’, initial_seed

t_ini = 0.0

t_perc = 0.0

60 t_anal = 0.0

dummy = etime(tstart)

call first_initialize()

dummy = etime(tstop)

65 t_firstini = tstop(1)-tstart(1)

do run_nr = 0, Runmax-1

call rnd_randomize(initial_seed+run_nr)

dummy = etime(tcurr)

118 Code

call initialize()

70 dummy = etime(tstop)

t_ini = t_ini + (tstop(1)-tcurr(1))

dummy = etime(tcurr)

call percolate()

dummy = etime(tstop)

75 t_perc = t_perc + (tstop(1)-tcurr(1))

end do

call do_output()

dummy = etime(tstop)

print *, ’# Required runtime: ’, (tstop(1)-tstart(1)), ’ seconds’

80 print *, ’# Speed: ’, 1.0d-6*Runmax*(1.0d0*Lmax)**3/(tstop(1)-tstart(1)),&

’ MSites/s’

contains

85 subroutine do_output()

integer :: i, j

real*8 :: ns_out(0:MAXBIN)

print *, ’# File format: L chi_avg largest_avg largest_max inf_avg n(s)_binned’

90 print *, ’# : 1 2 3 4 5 6 - ...’

do i = 0, Stepmax-2

do j = MAXBIN-1, 0, -1

ns_peri(j,i) = ns_peri(j,i) + ns_peri(j+1,i)

ns_out(j) = 1.0d0*ns_peri(j,i)/Runmax

95 end do

if(step_to_L(i) .ne. 0) then

print *, step_to_L(i), dsqrt(chi_sum(i)/Runmax),&

-1.0d0*largest_sum(i)/Runmax, -largest_max(i),&

1.0d0*inf_sum(i)/Runmax, (ns_out(j),j=0,MAXBIN)

100 end if

end do

print *, ’# t_firstini = ’, t_firstini, ’ seconds’

print *, ’# t_ini = ’, t_ini, ’ seconds’

105 print *, ’# t_perc = ’, t_perc, ’ seconds’

print *, ’# t_anal = ’, t_anal, ’ seconds’

print *, ’# nrecyc = ’, nrecyc

end subroutine

110 subroutine first_initialize()

integer :: i, j

IP = 2147483648.0d0*(2.0d0*p-1.0d0)

rcplog = 1.0d0/dlog(2.0d0)

115 nrecyc = 0

ns_peri = 0

largest_sum = 0

largest_max = 0

120 chi_sum = 0.0d0

inf_sum = 0

end subroutine

subroutine initialize()

125 integer :: i

ns_inrun = 0

nrlab = 1

stepwidth = 1

130 step_nr = 0

largest_inrun = 0

chi_inrun = 0

label = 0

end subroutine

135

119

subroutine percolate()

integer :: i, j

real*4 :: tsubstart(2), tsubstop(2)

140 ! L = 1

AB(0) = MAX

BC(0) = MAX

CA(0) = MAX

call site_cubic(ABC, AB(0), BC(0), CA(0))

145 X(0,0) = ABC

Y(0,0) = ABC

Z(0,0) = ABC

! L > 1

150 do L = 2, Lmax

A(L-1,0:L-2) = MAX

A(0:L-2,L-1) = MAX

B(L-1,0:L-2) = MAX

B(0:L-2,L-1) = MAX

155 C(L-1,0:L-2) = MAX

C(0:L-2,L-1) = MAX

AB(L-1) = MAX

BC(L-1) = MAX

CA(L-1) = MAX

160 ! Inner part of A

do j = L-2, 1, -1

do i = L-2, 1, -1

call site_cubic(A(i,j), A(i+1,j), A(i,j+1), A(i-1,j-1))

end do

165 end do

! Inner part of B

do j = L-2, 1, -1

do i = L-2, 1, -1

call site_cubic(B(i,j), B(i+1,j), B(i,j+1), B(i-1,j-1))

170 end do

end do

! Inner part of C

do j = L-2, 1, -1

do i = L-2, 1, -1

175 call site_cubic(C(i,j), C(i+1,j), C(i,j+1), C(i-1,j-1))

end do

end do

! Outer part of A

do i = L-2, 1, -1 ! edges

180 call site_cubic(A(i,0), A(i+1,0), A(i,1), CA(i-1))

call site_cubic(A(0,i), A(0,i+1), A(1,i), AB(i-1))

end do

call site_cubic(A(0,0), A(1,0), A(0,1), ABC) ! corner

! Outer part of B

185 do i = L-2, 1, -1 ! edges

call site_cubic(B(i,0), B(i+1,0), B(i,1), AB(i-1))

call site_cubic(B(0,i), B(0,i+1), B(1,i), BC(i-1))

end do

call site_cubic(B(0,0), B(1,0), B(0,1), ABC) ! corner

190 ! Outer part of C

do i = L-2, 1, -1 ! edges

call site_cubic(C(i,0), C(i+1,0), C(i,1), BC(i-1))

call site_cubic(C(0,i), C(0,i+1), C(1,i), CA(i-1))

end do

195 call site_cubic(C(0,0), C(1,0), C(0,1), ABC) ! corner

! AB

do i = L-2, 0, -1

call site_cubic(AB(i), AB(i+1), A(0,i), B(i,0))

end do

200 ! BC

do i = L-2, 0, -1

call site_cubic(BC(i), BC(i+1), B(0,i), C(i,0))

120 Code

end do

! CA

205 do i = L-2, 0, -1

call site_cubic(CA(i), CA(i+1), C(0,i), A(i,0))

end do

! ABC

call site_cubic(ABC, AB(0), BC(0), CA(0))

210 ! Now fill the buffer planes for the periodic b.c.

do i = 0, L-2

X(L-1,i) = B(L-2,L-2-i)

X(i,L-1) = A(L-2-i,L-2)

Y(L-1,i) = A(L-2,L-2-i)

215 Y(i,L-1) = C(L-2-i,L-2)

Z(L-1,i) = C(L-2,L-2-i)

Z(i,L-1) = B(L-2-i,L-2)

end do

X(L-1,L-1) = AB(L-2)

220 Y(L-1,L-1) = CA(L-2)

Z(L-1,L-1) = BC(L-2)

if (nrlab .ge. LIMIT) then

call garbage_collector()

end if

225 stepwidth = stepwidth - 1

if(stepwidth .eq. 0) then

dummy = etime(tsubstart)

call analyze()

largest_sum(step_nr) = largest_sum(step_nr) + largest_peri

230 largest_max(step_nr) = min(largest_max(step_nr), largest_peri)

chi_sum(step_nr) = chi_sum(step_nr) + chi_peri

inf_sum(step_nr) = inf_sum(step_nr) + inf_ptr + 1

step_to_L(step_nr) = L

call new_accounting_step()

235 dummy = etime(tsubstop)

t_anal = t_anal + (tsubstop(1)-tsubstart(1))

end if

end do

end subroutine

240

subroutine site_cubic(here, pred, top, back)

integer*8, intent(out) :: here

integer*8, intent(in) :: pred, top, back

integer*8 :: npred, ntop, nback, new, ici

245 logical :: pred_occ, top_occ, back_occ

call rnd_next()

if(rnd_get() .ge. IP) then

! This site is not occupied

250 here = MAX

else

! This site is occupied

ici = 1

top_occ = (top .lt. MAX)

255 pred_occ = (pred .lt. MAX)

back_occ = (back .lt. MAX)

if(.not. (top_occ .or. pred_occ .or. back_occ)) then

! Neighbours are not occupied, start a new cluster

new = nrlab

260 call advance_nrlab()

here = new

label(new) = -ici

else

! At least one neighbour is occupied

265 npred = MAX

ntop = MAX

nback = MAX

if(pred_occ) npred = root(pred)

if(top_occ) ntop = root(top)

121

270 if(back_occ) nback = root(back)

new = min(npred, ntop, nback)

if(pred_occ) then

ici = ici - label(npred)

if(npred .ne. new) label(npred) = new

275 end if

if(top_occ) then

if(ntop .ne. npred) ici = ici - label(ntop)

if(ntop .ne. new) label(ntop) = new

end if

280 if(back_occ) then

if((nback.ne.npred).and.(nback.ne.ntop)) ici = ici - label(nback)

if(nback .ne. new) label(nback) = new

end if

here = new

285 label(new) = -ici

end if

end if

end subroutine

290 ! Analyze with fully periodic b. c.

subroutine analyze()

integer :: i, j

call reclassify_planes()

295 label_peri = label

ns_peri(0:MAXBIN,step_nr) = ns_peri(0:MAXBIN,step_nr) + ns_inrun(0:MAXBIN)

largest_peri = largest_inrun

chi_peri = chi_inrun

inf_ptr = -1

300 !

! Search for infinite clusters

! Z is opposite to A:

do j = 0, L-2

do i = 0, L-2

305 call identify_infinite(A(i,j), Z(L-2-j,L-2-i))

end do

end do

do i = 0, L-2

call identify_infinite(AB(i), Z(L-2-i,L-1))

310 call identify_infinite(CA(i), Z(L-1,L-2-i))

end do

call identify_infinite(ABC, Z(L-1,L-1))

! Y is opposite to B:

do j = 0, L-2

315 do i = 0, L-2

call identify_infinite(B(i,j), Y(L-2-j,L-2-i))

end do

end do

do i = 0, L-2

320 call identify_infinite(BC(i), Y(L-2-i,L-1))

call identify_infinite(AB(i), Y(L-1,L-2-i))

end do

call identify_infinite(ABC, Y(L-1,L-1))

! X is opposite to C:

325 do j = 0, L-2

do i = 0, L-2

call identify_infinite(C(i,j), X(L-2-j,L-2-i))

end do

end do

330 do i = 0, L-2

call identify_infinite(CA(i), X(L-2-i,L-1))

call identify_infinite(BC(i), X(L-1,L-2-i))

end do

call identify_infinite(ABC, X(L-1,L-1))

335 !

! Make boundaries fully periodic

122 Code

! Z is opposite to A:

do j = 0, L-2

do i = 0, L-2

340 call connect_two_sites(A(i,j), Z(L-2-j,L-2-i))

end do

end do

do i = 0, L-2

call connect_two_sites(AB(i), Z(L-2-i,L-1))

345 call connect_two_sites(CA(i), Z(L-1,L-2-i))

end do

call connect_two_sites(ABC, Z(L-1,L-1))

! Y is opposite to B:

do j = 0, L-2

350 do i = 0, L-2

call connect_two_sites(B(i,j), Y(L-2-j,L-2-i))

end do

end do

do i = 0, L-2

355 call connect_two_sites(BC(i), Y(L-2-i,L-1))

call connect_two_sites(AB(i), Y(L-1,L-2-i))

end do

call connect_two_sites(ABC, Y(L-1,L-1))

! X is opposite to C:

360 do j = 0, L-2

do i = 0, L-2

call connect_two_sites(C(i,j), X(L-2-j,L-2-i))

end do

end do

365 do i = 0, L-2

call connect_two_sites(CA(i), X(L-2-i,L-1))

call connect_two_sites(BC(i), X(L-1,L-2-i))

end do

call connect_two_sites(ABC, X(L-1,L-1))

370 !

! Reclassify infinite clusters

if(inf_ptr .gt. MAXINF) print *, ’Warning: too many infinite clusters’

! Reclassify infinite labels

do i = 0, min(inf_ptr, MAXINF)

375 inf_label(i) = root_peri(inf_label(i))

end do

! Account labels

do i = 1, MAX

if(label_peri(i) .lt. 0) call account_label_peri(i)

380 end do

end subroutine

subroutine account_label_inrun(lab)

integer, intent(in) :: lab

385 integer :: ibin

if(label(lab) .lt. 0) then

ibin = dlog(-1.0d0*label(lab))*rcplog+0.00001d0

if (ibin .le. MAXBIN) ns_inrun(ibin) = ns_inrun(ibin)+1

390 largest_inrun = min(largest_inrun, label(lab))

chi_inrun = chi_inrun+(1.0d0*label(lab))*label(lab)

end if

end subroutine

395 subroutine account_label_peri(lab)

integer, intent(in) :: lab

integer :: ibin, i

logical :: is_not_infinite

400 if(label_peri(lab) .lt. 0) then

ibin = dlog(-1.0d0*label_peri(lab))*rcplog+0.00001d0

if (ibin .le. MAXBIN) ns_peri(ibin,step_nr) = ns_peri(ibin,step_nr)+1

largest_peri = min(largest_peri, label_peri(lab))

123

is_not_infinite = .true.

405 do i = 0, min(inf_ptr, MAXINF)

if(lab .eq. inf_label(i)) then

chi_peri = chi_peri+(1.0d0*label_peri(lab))*label_peri(lab)

end if

end do

410 end if

end subroutine

!root(MAX) gives MAX, to make life easier

integer*8 recursive function root(lab) result(rootlabel)

415 integer*8, intent(in) :: lab

if(lab .eq. MAX) then

rootlabel = MAX

else if(label(lab) .lt. 0) then

420 rootlabel = lab

else if (label(lab) .eq. 0) then

print *, ’ERROR: Dead end! L = ’, L

stop 5

else

425 label(lab) = root(label(lab))

rootlabel = label(lab)

end if

end function

430 !root_peri(MAX) gives MAX, to make life easier

!root_peri works on label_peri()

integer*8 recursive function root_peri(lab) result(rootlabel)

integer*8, intent(in) :: lab

435 if(lab .eq. MAX) then

rootlabel = MAX

else if(label_peri(lab) .lt. 0) then

rootlabel = lab

else if (label_peri(lab) .eq. 0) then

440 print *, ’ERROR: Dead end! L = ’, L

stop 6

else

label_peri(lab) = root_peri(label_peri(lab))

rootlabel = label_peri(lab)

445 end if

end function

subroutine connect_two_sites(a, b)

integer*8, intent(in) :: a, b

450 integer*8 :: ra, rb

ra = root_peri(a)

rb = root_peri(b)

if((ra .ne. MAX) .and. (rb .ne. MAX) .and. (ra .ne. rb)) then

455 label_peri(ra) = label_peri(ra) + label_peri(rb)

label_peri(rb) = ra

end if

end subroutine

460 subroutine identify_infinite(a, b)

integer*8, intent(in) :: a, b

integer*8 :: ra, rb

logical :: is_a_new_one

integer :: i

465

ra = root_peri(a)

rb = root_peri(b)

if((ra .ne. MAX) .and. (ra .eq. rb)) then

is_a_new_one = .true.

470 do i = 0, min(inf_ptr, MAXINF)

124 Code

if(ra .eq. inf_label(i)) is_a_new_one = .false.

end do

if(is_a_new_one) then

inf_ptr = inf_ptr + 1

475 if(inf_ptr .le. MAXINF) inf_label(inf_ptr) = ra

end if

end if

end subroutine

480 subroutine garbage_collector()

integer :: i, j

nrecyc = nrecyc + 1

! First reclassify all labels in working arrays and buffers

485 call reclassify_planes()

! Delete all indirect labels

do i = 1, MAX

if(label(i) .gt. 0) label(i) = 0

! Alternatively: label(i) = min(label(i),0) ! May be faster on some CPUs

490 end do

! Mark all living root labels with a positive sign, MAX is treated like all

! other labels. For this to work, label(MAX) has to be 0.

do j = 0, L-2

do i = 0, L-2

495 call mark_living_label(A(i,j))

call mark_living_label(B(i,j))

call mark_living_label(C(i,j))

end do

end do

500 do j = 0, L-1

do i = 0, L-1

call mark_living_label(X(i,j))

call mark_living_label(Y(i,j))

call mark_living_label(Z(i,j))

505 end do

end do

do i = 0, L-2

call mark_living_label(AB(i))

call mark_living_label(BC(i))

510 call mark_living_label(CA(i))

end do

call mark_living_label(ABC)

! Throw away labels with negative sign. Do not forget to count them.

! Invert labels with positive sign.

515 do i = 1, MAX

if(label(i) .lt. 0) then

call account_label_inrun(i)

label(i) = 0

else

520 label(i) = -label(i)

end if

end do

! Find the first free label and let nrlab point to it

nrlab = 0

525 call advance_nrlab()

end subroutine

subroutine reclassify_planes()

integer :: i, j

530

do j = 0, L-2

do i = 0, L-2

A(i,j) = root(A(i,j))

B(i,j) = root(B(i,j))

535 C(i,j) = root(C(i,j))

end do

end do

125

do j = 0, L-1

do i = 0, L-1

540 X(i,j) = root(X(i,j))

Y(i,j) = root(Y(i,j))

Z(i,j) = root(Z(i,j))

end do

end do

545 do i = 0, L-2

AB(i) = root(AB(i))

BC(i) = root(BC(i))

CA(i) = root(CA(i))

end do

550 ABC = root(ABC)

end subroutine

! Mark living label (negative sign) with positive sign.

subroutine mark_living_label(lab)

555 integer*8, intent(in) :: lab

if(label(lab) .lt. 0) label(lab) = -label(lab)

end subroutine

560 ! Let nrlab point to the next free label

subroutine advance_nrlab()

do

nrlab = nrlab + 1

565 if(nrlab .ge. MAX) then ! never utilize label(MAX) !

print *, ’ERROR: not enough free labels!’

stop 3

end if

if(label(nrlab) .eq. 0) exit

570 end do

end subroutine

! Enter a new accounting step: set stepwidth

subroutine new_accounting_step()

575

!stepwidth = L / 100 + 1

if(L .lt. 10) then

stepwidth = 1

else if(L .lt. 100) then

580 stepwidth = 5

else if(L .lt. 1e3) then

stepwidth = 50

else if(L .lt. 1e4) then

stepwidth = 5e2

585 else if(L .lt. 1e5) then

stepwidth = 5e3

else

stepwidth = 5e4

end if

590 step_nr = step_nr + 1

end subroutine

! 32 bit LFG: R(471,1586,6988,9689)

subroutine rnd_randomize(iseed)

595 integer :: iseed

integer :: i, ii

integer*4 :: ibm, ici

ibm = 2*iseed-1

600 do i = 0, RNDMAX

ici = 0

do ii = 1, 32 ! 32-bit version

ici = ishft(ici, 1)

ibm = ibm * 16807

126 Code

605 if(ibm .lt. 0) ici = ior(ici, one32)

end do

rnd_data(i) = ici

end do

rnd_idx = 0

610 do i = 1, 8*(RNDMAX+1) ! "heat up" generator

call rnd_next()

end do

end subroutine

615 subroutine rnd_next()

rnd_idx = iand(rnd_idx + 1, RNDMAX)

rnd_data(rnd_idx) = ieor(&

ieor(rnd_data(iand(rnd_idx-471,RNDMAX)),rnd_data(iand(rnd_idx-1586,RNDMAX))),&

ieor(rnd_data(iand(rnd_idx-6988,RNDMAX)),rnd_data(iand(rnd_idx-9689,RNDMAX))))

620 end subroutine

integer*4 function rnd_get()

rnd_get = rnd_data(rnd_idx)

end function

625

end

F.4 Ising model

This program uses MPI (version 1.1). It should be portable with one possible
exception: some compilers may need the hex-constants for MASK_0, MASK_1, etc. in a
different format, consult the handbook of your compiler; but most modern compilers
handle these without problems.

! Two-dimensional ising model with glauber kinetics.

! Uses multi-spin coding and mpi routines for parallelization

! Uses one bit per spin and compression in multi-spin-coded direction.

5 ! Due to "historical reasons", the communication pattern works in the

! opposite direction as one would expect (i. e. pe_succ is the left neighbour).

PROGRAM Ising

10 implicit none

include ’mpif.h’

integer, parameter :: LL = 128 ! LL must be a multiple of 4

integer, parameter :: L = LL*16 ! L/NPROCS must be a natural number

15 integer*8, parameter :: NPROCS = 4

integer, parameter :: MAXSTEP = 20

integer*8, parameter :: IDIM = 2

integer*8, parameter :: ISEED = 113

integer*8, parameter :: one = 1

20 integer*8, parameter :: fifteen = 15

integer*8, parameter :: MASK_3 = ’8888888888888888’X

integer*8, parameter :: MASK_2 = ’4444444444444444’X

integer*8, parameter :: MASK_1 = ’2222222222222222’X

integer*8, parameter :: MASK_0 = ’1111111111111111’X

25 integer, parameter :: tag = 1

real*8 :: JkbT ! J/(k_B*T)

integer status(MPI_STATUS_SIZE)

30 integer err

integer mpi_nprocs

integer*8 spin(0:LL/4-1, 0:L/NPROCS+1)

integer*8 decom(0:LL+1, 0:2)

35 integer*8 prob(0:2*IDIM)

integer pe_me, pe_pred, pe_succ

127

integer j

integer*8 ibm

40 integer*8 IMULT

!real*4 etime, dummy, t_start(2), t_end(2) ! Sun

real*8 rtc, t_start, t_end ! IBM Regatta

!integer*8 irtc, t_start, t_end ! Cray T3E

45

JkbT = 0.5d0*(dlog(1.0d0+dsqrt(2.0d0)))

!dummy = etime(t_start) ! Sun

t_start = rtc() ! IBM Regatta

!t_start = irtc() ! Crat T3E

50

if((L/NPROCS)*NPROCS .ne. L) then

print *, ’L/NPROCS must be a natural number!’

stop 1

end if

55 if((LL/4)*4 .ne. LL) then

print *, ’LL/4 must be a natural number!’

stop 1

end if

60 call mpi_init(err)

call mpi_comm_size(MPI_COMM_WORLD, mpi_nprocs, err)

if(NPROCS .ne. mpi_nprocs) then

print *, ’Wrong number of processors!’

65 stop 1

end if

IMULT = 13**7 ! Unfortunately necessary, as the IBM compiler

IMULT = IMULT * 13**6 ! has its problems with 64-bit constants.

70

call mpi_comm_rank(MPI_COMM_WORLD, pe_me, err)

pe_pred = pe_me - 1

if(pe_pred .eq. -1) pe_pred = NPROCS - 1

pe_succ = pe_me + 1

75 if(pe_succ .eq. NPROCS) pe_succ = 0

if(pe_me .eq. 0) then

print *, ’# J/kbT = ’, JkbT, ’, L = ’, L, ’, NPROCS = ’, NPROCS,&

’, ISEED = ’, ISEED

print *, ’# PRNG: ibm*’, IMULT, ’, new version’

80 end if

! Initialize the PRNG

ibm = 2*ISEED-1

do j = 0, pe_me

85 ibm = ibm * 65539

end do

call init_spin()

call init_prob()

90

do j = 1, MAXSTEP

call mcs_step(j)

end do

95 call mpi_finalize(err)

!dummy = etime(t_end) ! Sun

t_end = rtc() ! IBM Regatta

!t_end = irtc() ! Cray T3E

100

!print *, ’# Elapsed time: ’, t_end(1) - t_start(1) ! Sun

print *, ’# Elapsed time: ’, t_end - t_start ! IBM Regatta

!print *, ’# Elapsed time: ’, (t_end - t_start)*1.33333333d-5 ! Cray T3E

128 Code

105 contains

subroutine init_spin()

integer :: ii, i

110 do i = 0, L/NPROCS + 1

do ii = 0, LL/4-1

spin(ii,i) = 0

end do

end do

115 end subroutine

subroutine init_prob()

integer :: i

real*8 :: ex

120

do i = 0, 2*IDIM

ex = exp((i-IDIM)*4 * JkbT)

prob(i) = 2.0d0*2147483648.0d0*2147483648.0d0*(2.0d0*ex/(1.0d0+ex)-1.0d0)

end do

125 end subroutine

subroutine mcs_step(timestep)

integer, intent(in) :: timestep

integer :: ii, i, ibit

130 integer*8 :: word, ici, mask

integer, save :: old = 0, current = 1, new = 2

integer :: tmp

integer*8 :: mag, mag_acc

135 mag = 0

! Inititalize decom(,old) and decom(,current)

do ii = 0, LL/4-1

ici = spin(ii,0)

decom(4*ii+1,old) = ishft(iand(ici,MASK_3),-3)

140 decom(4*ii+2,old) = ishft(iand(ici,MASK_2),-2)

decom(4*ii+3,old) = ishft(iand(ici,MASK_1),-1)

decom(4*ii+4,old) = iand(ici,MASK_0)

ici = spin(ii,1)

decom(4*ii+1,current) = ishft(iand(ici,MASK_3),-3)

145 decom(4*ii+2,current) = ishft(iand(ici,MASK_2),-2)

decom(4*ii+3,current) = ishft(iand(ici,MASK_1),-1)

decom(4*ii+4,current) = iand(ici,MASK_0)

end do

decom(0,current) = ishftc(decom(LL,current),-4)

150 do i = 1, L/NPROCS

! Decompress a line

do ii = 0, LL/4-1

ici = spin(ii,i+1)

decom(4*ii+1,new) = ishft(iand(ici,MASK_3),-3)

155 decom(4*ii+2,new) = ishft(iand(ici,MASK_2),-2)

decom(4*ii+3,new) = ishft(iand(ici,MASK_1),-1)

decom(4*ii+4,new) = iand(ici,MASK_0)

end do

decom(0,new) = ishftc(decom(LL,new),-4)

160 do ii = 1, LL

ici = decom(ii,current)

word = ieor(decom(ii-1,current),ici)+ieor(decom(ii+1,current),ici)+&

ieor(decom(ii,old),ici)+ieor(decom(ii,new),ici)

mask = one

165 do ibit = 0, 15

ibm = ibm * IMULT

if(ibm .lt. prob(iand(word,fifteen))) then

ici = ieor(ici, mask)

end if

170 mag = mag + ishft(iand(ici, mask),-4*ibit)

129

word = ishft(word, -4)

mask = ishft(mask, 4)

end do

decom(ii,current) = ici

175 ! take care of the boundaries

if(ii .eq. 1) then

decom(LL+1,current) = ishftc(decom(1,current),4)

end if

end do

180 ! Compress a line

do ii = 0, LL/4-1

spin(ii,i-1) = ishft(decom(4*ii+1,old),3) + ishft(decom(4*ii+2,old),2) &

+ ishft(decom(4*ii+3,old),1) + decom(4*ii+4,old)

end do

185 tmp = old

old = current

current = new

new = tmp

! Exchange boundaries with neighbours

190 if(i .eq. 1) then

call mpi_sendrecv(spin(0,1), LL/4, MPI_INTEGER8, pe_succ, tag, &

spin(0,L/NPROCS+1), LL/4, MPI_INTEGER8, &

pe_pred, tag, MPI_COMM_WORLD, status, err)

end if

195 end do

! Sum up magnetization on PE 0 and print it out:

call mpi_reduce(mag, mag_acc, 1, MPI_INTEGER8, MPI_SUM, 0, MPI_COMM_WORLD, err)

if(pe_me .eq. 0) then

print *, timestep, -2.0d0*mag_acc/(1.0d0*L*L)+1.0d0

200 end if

do ii = 0, LL/4-1

spin(ii,L/NPROCS) = ishft(decom(4*ii+1,old),3) + ishft(decom(4*ii+2,old),2) &

+ ishft(decom(4*ii+3,old),1) + decom(4*ii+4,old)

end do

205 call mpi_sendrecv(spin(0,L/NPROCS), LL/4, MPI_INTEGER8, pe_pred, &

tag, spin(0,0), LL/4, MPI_INTEGER8, pe_succ, &

tag, MPI_COMM_WORLD, status, err)

end subroutine

210 end

130 Code

Appendix G

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt,
die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der
Arbeit einschließlich Tabellen, Karten und Abbildungen, die anderen Werken im
Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung
kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder
Universität zur Prüfung vorgelegen hat; dass sie abgesehen von unten angegebenen
Teilpublikationen noch nicht veröffentlicht worden ist sowie, dass ich eine solche
Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde.
Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte
Dissertation ist von Prof. Stauffer betreut worden.

Köln, den

Teilveröffentlichungen

D. Tiggemann, Percolation on growing lattices, Int. J. Mod. Phys. C 17, 1141
(2006).

D. Tiggemann, New results for the dynamical critical behaviour of the two-

dimensional Ising model, Int. J. Mod. Phys. C 15, 1069 (2004).

D. Tiggemann, Fluctuations of cluster numbers in percolation,
Int. J. Mod. Phys. C 13, 777 (2002).

D. Tiggemann, Simulation of percolation on massively-parallel computers,
Int. J. Mod. Phys. C 12, 871 (2001).

D. Tiggemann, Simulation of percolation on parallel computers, Diploma thesis
at the Institute for Theoretical Physics at the University of Cologne (2001).

131

132 Erklärung

This page intentionally left

blank

133

	Abstract
	Zusammenfassung
	Introduction
	Goal of this thesis
	What is percolation?
	Phenomena of percolation
	Computational approaches---algorithms
	Exact enumeration
	Justification for Monte Carlo algorithms
	Leath algorithm
	Newman-Ziff algorithm
	Hoshen-Kopelman algorithm

	Fluctuations of Cluster Numbers
	Introduction
	Statistical measures
	Simulations
	Distribution of Cluster Numbers
	Variance of cluster numbers
	Skewness and kurtosis of distributions

	Summary and outlook

	Parallelizing the Hoshen-Kopelman algorithm using domain decomposition
	Devising a parallelized version of the Hoshen-Kopelman algorithm
	Domain decomposition
	Clusters extending over several sub-domains
	Recycling of redundant labels
	Counting of clusters
	Fully periodic boundary conditions
	Step-by-step description of the algorithm

	Other ways of parallelizing Hoshen-Kopelman
	Results of Monte Carlo simulations
	Cluster size distribution
	Corrections to scaling
	Influence of boundary conditions on finite-size effects
	Number density
	Quality of pseudo-random number generators
	Speed of simulations and parallel efficiency

	Summary and outlook

	Growing Lattices
	Motivation
	Computational method
	A modified Hoshen-Kopelman algorithm
	Fully periodic boundary conditions
	Recycling of labels

	Results for three dimensions
	Cluster size distribution
	Number density
	Number of spanning clusters
	Size of largest cluster

	Results for two dimensions
	Speed of simulations
	Summary and outlook

	Critical Behaviour of the Ising Model
	Rationale
	Introduction
	Computational method
	Parallelization
	Multi-spin coding

	Simulations
	Results
	Speed of simulation and parallel efficiency
	Summary and outlook

	Summary and Outlook
	Summary
	Outlook

	Acknowledgements
	Bibliography
	Typical errors in Monte Carlo data
	Pseudo-random number generators
	Linear congruential generators
	Lagged Fibonacci generators
	Hashing generators
	Speed of different random number generators

	Amdahl's law and measuring parallel efficency on real-life computers
	Code of programs
	General remarks
	Parallelized Hoshen-Kopelman
	Percolation on growing lattices
	Ising model

	Erklärung

